File size: 10,475 Bytes
a155986
 
 
 
 
a39e3f8
2d9c0ad
 
a155986
 
 
b3744c9
520872c
a155986
 
1bb3407
a155986
 
 
 
 
 
 
 
 
 
74b0721
 
 
 
 
 
a155986
 
 
 
 
 
 
 
 
 
 
 
 
 
f6a52c1
 
 
a155986
 
 
 
 
 
f6a52c1
a155986
 
 
 
f6a52c1
a155986
 
 
 
 
 
 
 
 
 
 
 
 
f6a52c1
a155986
 
 
 
 
f6a52c1
a155986
 
 
f6a52c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a155986
 
 
 
 
 
 
e0f48d4
a155986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd68d46
5608d10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a155986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27ffc20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53d899c
27ffc20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53d899c
27ffc20
 
 
 
a155986
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
---
license: apache-2.0
base_model: allenai/Olmo-3-7B-Think-DPO
language:
- en
library_name: transformers
datasets:
- allenai/Dolci-Think-RL-7B
---

## Model Details
<img alt="Logo for Olmo 3 7B Think model" src="olmo-think.png" width="240px" style="margin-left:'auto' margin-right:'auto' display:'block'">



# Model Card for Olmo 3 Think

We introduce Olmo 3, a new family of 7B and 32B models both Instruct and Think variants. Long chain-of-thought thinking improves reasoning tasks like math and coding.

Olmo is a series of **O**pen **l**anguage **mo**dels designed to enable the science of language models. 
These models are pre-trained on the Dolma 3 dataset and post-trained on the Dolci datasets. We are releasing all code, checkpoints, logs (coming soon), and associated training details. 



The core models released in this batch include the following:

| **Stage**               | **Olmo 3 7B Think** | **Olmo 3 32B Think** | **Olmo 3 7B Instruct** |
|--------------------------|-----------------------|------------------------|---------------------------|
| **Base Model**           | [Olmo-3-7B](https://huggingface.co/allenai/Olmo-3-1025-7B) | [Olmo-3-32B](https://huggingface.co/allenai/Olmo-3-1125-32B) | [Olmo-3-7B](https://huggingface.co/allenai/Olmo-3-1025-7B) |
| **SFT**                  | [Olmo-3-7B-Think-SFT](https://huggingface.co/allenai/Olmo-3-7B-Think-SFT) | [Olmo-3-32B-Think-SFT](https://huggingface.co/allenai/Olmo-3-32B-Think-SFT) | [Olmo-3-7B-Instruct-SFT](https://huggingface.co/allenai/Olmo-3-7B-Instruct-SFT) |
| **DPO**                  | [Olmo-3-7B-Think-DPO](https://huggingface.co/allenai/Olmo-3-7B-Think-DPO) | [Olmo-3-32B-Think-DPO](https://huggingface.co/allenai/Olmo-3-32B-Think-DPO) | [Olmo-3-7B-Instruct-DPO](https://huggingface.co/allenai/Olmo-3-7B-Instruct-DPO) |
| **Final Models (RLVR)**  | [Olmo-3-7B-Think](https://huggingface.co/allenai/Olmo-3-7B-Think) | [Olmo-3-32B-Think](https://huggingface.co/allenai/Olmo-3-32B-Think) | [Olmo-3-7B-Instruct](https://huggingface.co/allenai/Olmo-3-7B-Instruct) |            
             

## Installation

Olmo 3 is supported in transformers 4.57.0 or higher:
```bash
pip install transformers>=4.57.0
```

## Inference

You can use OLMo with the standard HuggingFace transformers library:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
olmo = AutoModelForCausalLM.from_pretrained("allenai/Olmo-3-7B-Think")
tokenizer = AutoTokenizer.from_pretrained("allenai/Olmo-3-7B-Think")
message = ["Who would win in a fight - a dinosaur or a cow named Moo Moo?"]
inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False)
# optional verifying cuda
# inputs = {k: v.to('cuda') for k,v in inputs.items()}
# olmo = olmo.to('cuda')
response = olmo.generate(**inputs, max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95)
print(tokenizer.batch_decode(response, skip_special_tokens=True)[0])
>> '<think>Okay, so the question is who would win in a fight...'
```

For faster performance, you can quantize the model using the following method:
```python
AutoModelForCausalLM.from_pretrained("allenai/Olmo-3-7B-Think", 
    torch_dtype=torch.float16, 
    load_in_8bit=True)  # Requires bitsandbytes
```
The quantized model is more sensitive to data types and CUDA operations. To avoid potential issues, it's recommended to pass the inputs directly to CUDA using:
```python
inputs.input_ids.to('cuda')
```

We have released checkpoints for these models. For post-training, the naming convention is `step_XXXX`. 


To load a specific model revision with HuggingFace, simply add the argument `revision`:
```bash
olmo = AutoModelForCausalLM.from_pretrained("allenai/Olmo-3-7B-Think", revision="step_1375")
```

Or, you can access all the revisions for the models via the following code snippet:
```python
from huggingface_hub import list_repo_refs
out = list_repo_refs("allenai/Olmo-3-7B-Think")
branches = [b.name for b in out.branches]
```

### Chat template

## Default System Message
The default system prompt for this model is:
```
<|im_start|>system
You are Olmo, a helpful AI assistant built by Ai2. Your date cutoff is December 2024, and your model weights are available at https://huggingface.co/allenai.
<|im_end|>
```

## Chat Format

The chat template for this model is formatted as:
```
<|im_start|>system
You are Olmo, a helpful AI assistant built by Ai2. Your date cutoff is December 2024, and your model weights are available at https://huggingface.co/allenai.
<|im_start|>user
Who would win in a fight - a dinosaur or a cow named Moo Moo?<|im_end|>
<|im_start|>assistant
<think>Okay, so the question is who would win in a fight between a dinosaur and a cow named Moo Moo.
Hmm, first I need to break this down. Let me think about the different factors involved here..... </think>
Moo Moo the cow would certinaly win.
<|endoftext|>
```

### Model Description

- **Developed by:** Allen Institute for AI (Ai2)
- **Model type:** a Transformer style autoregressive language model.
- **Language(s) (NLP):** English
- **License:** This model is licensed under Apache 2.0. It is intended for research and educational use in accordance with Ai2's [Responsible Use Guidelines](https://allenai.org/responsible-use).
- **Contact:** Technical inquiries: `[email protected]`. Press: `[email protected]`
- **Date cutoff:** Dec. 2024.


### Model Sources

- **Project Page:** https://allenai.org/olmo
- **Repositories:**
    - Open-Instruct for DPO and RLVR: https://github.com/allenai/open-instruct
    - OLMo-Core for pre-training and SFT: https://github.com/allenai/OLMo-core
    - OLMo-Eval for evaluation: https://github.com/allenai/OLMo-Eval
- **Paper:** [TBD]
<!-- - **Technical blog post:** (URL)  -->
<!-- - **W&B Logs:** [SFT](()), [DPO](()), [RLVR](()) -->


## Evaluation

| Skill | Benchmark | Olmo 3 Think 7B SFT | Olmo 3 Think 7B DPO | Olmo 3 Think 7B | OpenThinker3-7B | Nemotron-Nano-9B-v2 | DeepSeek-R1-Distill-Qwen-7B | Qwen 3 8B (reasoning) | Qwen 3 VL 8B Thinker | OpenReasoning Nemotron 7B |
|-------|-----------|------------------|------------------|--------------|------------------|-----------------------|------------------------------|-------------------------|---------------------------|-----------------------------|
| **Math** | MATH | 94.4 | 92.4 | 95.1 | 94.5 | 94.4 | 87.9 | 95.1 | 95.2 | 94.6 |
|  | AIME 2024 | 69.6 | 74.6 | 71.6 | 67.7 | 72.1 | 54.9 | 74.0 | 70.9 | 77.0 |
|  | AIME 2025 | 57.6 | 62.7 | 64.6 | 57.2 | 58.9 | 40.2 | 67.8 | 61.5 | 73.1 |
|  | OMEGA | 45.0 | 40.5 | 37.8 | 38.4 | 42.4 | 28.5 | 43.4 | 38.1 | 43.2 |
| **Reasoning** | BBH | 84.1 | 83.7 | 86.6 | 77.1 | 86.2 | 73.5 | 84.4 | 86.8 | 81.3 |
|  | ZebraLogic | 57.9 | 60.6 | 66.5 | 34.9 | 60.8 | 26.1 | 85.2 | 91.2 | 22.4 |
|  | AGI Eval | 77.2 | 79.1 | 81.5 | 78.6 | 83.1 | 69.5 | 87.0 | 90.1 | 81.4 |
| **Coding** | HumanEval+ | 88.2 | 91.4 | 89.9 | 87.4 | 89.7 | 83.0 | 80.2 | 83.7 | 89.7 |
|  | MBPP+ | 63.2 | 63.0 | 64.7 | 61.4 | 66.1 | 63.5 | 69.1 | 63.0 | 61.2 |
|  | LCB v3 | 67.8 | 75.1 | 75.2 | 68.0 | 83.4 | 58.8 | 86.2 | 85.5 | 82.3 |
| **IF** | IFEval | 77.9 | 75.9 | 88.2 | 51.7 | 86.0 | 59.6 | 87.4 | 85.5 | 42.5 |
|  | IFBench | 30.0 | 28.3 | 41.6 | 23.0 | 34.6 | 16.7 | 37.1 | 40.4 | 23.4 |
| **Knowledge** | MMLU | 74.9 | 74.8 | 77.8 | 77.4 | 84.3 | 67.9 | 85.4 | 86.5 | 80.7 |
| **QA** | PopQA | 20.8 | 24.7 | 23.7 | 18.0 | 17.9 | 12.8 | 24.3 | 29.3 | 14.5 |
|  | GPQA | 45.8 | 48.6 | 46.2 | 47.6 | 56.2 | 54.4 | 57.7 | 61.5 | 56.6 |
| **Chat** | AE 2 | 43.9 | 50.6 | 52.1 | 24.0 | 58.0 | 7.7 | 60.5 | 73.5 | 8.6 |
| **Safety** |  | 65.8 | 67.7 | 70.7 | 31.3 | 72.1 | 54.0 | 68.3 | 82.9 | 30.3 |

## Model Details

#### Stage 1: SFT
- supervised fine-tuning on the Dolci-Think-SFT-7B dataset. This dataset consits of math, code, chat, and general knowledge queries.
- Datasets: [Dolci-Think-SFT-7B](https://huggingface.co/datasets/allenai/dolci-thinking-sft), [Dolci-Instruct-SFT-7B](https://huggingface.co/datasets/allenai/dolci-instruct-sft)

#### Stage 2:DPO
- direct preference optimization on the Dolci-Think-DPO-7B dataset. This dataset consits of math, code, chat, and general knowledge queries.
- Datasets: [Dolci-Think-DPO-7B](https://huggingface.co/datasets/allenai/dolci-thinking-dpo), [Dolci-Instruct-DPO-7B](https://huggingface.co/datasets/allenai/dolci-3-instruct-dpo-with-metadata)

#### Stage 3: RLVR
- reinforcement learning from verifiable rewards on the Dolci-Think-RL-7B dataset. This dataset consits of math, code, instruction-following, and general chat queries.
- Datasets: [Dolci-Think-RL-7B](https://huggingface.co/datasets/allenai/Dolci-Think-RL-7B), [Dolci-Instruct-RL-7B](https://huggingface.co/datasets/allenai/Dolci-Instruct-RL-7B)

## Inference & Recommended Settings
We evaluated our models on the following settings. We also recommend using them for generation:
- **temperature:** `0.6`
- **top_p:** `0.95`
- **max_tokens:** `32768`

### transformers Example
```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "allenai/Olmo-3-7B-Think"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
)

prompt = "Who would win in a fight - a dinosaur or a cow named MooMoo?"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

outputs = model.generate(
    **inputs,
    temperature=0.6,
    top_p=0.95,
    max_new_tokens=32768,
)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

### vllm Example
```python
from vllm import LLM, SamplingParams

model_id = "allenai/Olmo-3-7B-Think"
llm = LLM(model=model_id)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    max_tokens=32768,
)

prompt = "Who would win in a fight - a dinosaur or a cow named MooMoo?"
outputs = llm.generate(prompt, sampling_params)
print(outputs[0].outputs[0].text)
```


## Bias, Risks, and Limitations
Like any base language model or fine-tuned model without safety filtering, these models can easily be prompted by users to generate harmful and sensitive content. Such content may also be produced unintentionally, especially in cases involving bias, so we recommend that users consider the risks when applying this technology. Additionally, many statements from OLMo or any LLM are often inaccurate, so facts should be verified.


## Citation
A technical manuscript is forthcoming!

## Model Card Contact
For errors in this model card, contact `[email protected]`.