Datasets:
dataset_info:
features:
- name: image
dtype: image
- name: question
dtype: string
- name: choices
list: string
- name: answer
dtype: int32
- name: meta_info
struct:
- name: title
dtype: string
- name: journal
dtype: string
- name: doi
dtype: string
- name: url
dtype: string
- name: question_type
dtype: string
splits:
- name: en
num_bytes: 546653187.125
num_examples: 1525
- name: zh
num_bytes: 546319847.125
num_examples: 1525
download_size: 218606009
dataset_size: 1092973034.25
configs:
- config_name: RxnBench-VQA
data_files:
- split: en
path: data/en-*
- split: zh
path: data/zh-*
license: cc-by-nc-sa-4.0
task_categories:
- visual-question-answering
language:
- en
- zh
tags:
- chemistry
RxnBench: A Benchmark for Chemical Reaction Figure Understanding
๐ Benchmark Summary
RxnBench (SF-QA) is a visual question answering (VQA) benchmark comprising 1,525 multiple-choice questions (MCQs) at the PhD-level of organic chemistry reaction understanding.
The benchmark is built from 305 scientific figures drawn from high-impact OpenAssess journals. For each figure, domain experts carefully designed five multiple-choice VQA questions targeting the interpretation of organic reaction diagrams. These questions were further refined through multiple rounds of rigorous review and revision to ensure both clarity and scientific accuracy. The questions cover a variety of types, including the description of chemical reaction images, extraction of reaction content, recognition of molecules or Markush structures, and determination of mechanisms. This benchmark challenges visual-language models on their foundational knowledge of organic chemistry, multimodal contextual reasoning, and chemical reasoning skills.
The benchmark is released in both English and Chinese versions.
๐ Task Types
We categorize chemical reaction visual question answering tasks into six types:
- Type 0 โ Fact Extraction: Direct retrieval of textual or numerical information from reaction schemes.
- Type 1 โ Reagent Roles and Functions Identification: Identification of reagents and their functional roles, requiring chemical knowledge and reaction-type awareness.
- Type 2 โ Reaction Mechanism and Process Understanding: Interpretation of reaction progression, including intermediates, catalytic cycles, and mechanistic steps.
- Type 3 โ Comparative Analysis and Reasoning: Comparative evaluation, causal explanation, or outcome prediction under varying conditions.
- Type 4 โ Multi-step Synthesis and Global Understanding: Comprehension of multi-step pathways, step-to-step coherence, and overall synthetic design.
- Type 5 โ Chemical Structure Recognition: Extraction and reasoning-based parsing of chemical structures in SMILES or E-SMILES (as defined in the MolParser paper).
๐ฏ Benchmark Evaluation
This benchmark evaluates model performance on multiple-choice question answering (MCQ) tasks.
We provide two versions of the prompt template, depending on the language setting.
English Prompt
Question: {question}
Choices:
A. {choice_A}
B. {choice_B}
C. {choice_C}
D. {choice_D}
Based on the image and the question, choose the most appropriate answer.
**Only output a single letter (A, B, C, or D)**. Do NOT output any other text or explanation.
Chinese Prompt
้ฎ้ข: {question}
้้กน:
A. {choice_A}
B. {choice_B}
C. {choice_C}
D. {choice_D}
่ฏทๆ นๆฎๅพๅๅ้ฎ้ข๏ผไปไปฅไธๅไธช้้กนไธญ้ๆฉๆๅ้็็ญๆกใ
ๅช่พๅบๅไธชๅญๆฏ (A, B, C ๆ D)๏ผไธ่ฆ่พๅบ้้กนๅ
ๅฎน๏ผไนไธ่ฆ่พๅบไปปไฝ่งฃ้ใ
Evaluation Protocol
If the modelโs output is not one of A, B, C, or D, we use GPT-4o to map the output to AโD based on the option content. The final evaluation reports the absolute accuracy of the benchmark in both English and Chinese versions.
Code Example: https://github.com/uni-parser/RxnBench
๐ Benchmark Leaderboard
We evaluated several of the latest popular MLLMs, including both closed-source and open-source models.
| Moldel | Think | Weight | API-Version | RxnBench-En | RxnBench-Zh | Mean Score |
|---|---|---|---|---|---|---|
| Gemini-3-Pro-preview | โ | Proprietary | 20251119 | 0.9318 | 0.9403 | 0.9361 |
| GPT-5(high) | โ | Proprietary | 20250807 | 0.9279 | 0.9246 | 0.9263 |
| Gemini-2.5-Pro | โ | Proprietary | 20250617 | 0.9095 | 0.9423 | 0.9259 |
| GPT-5.1(high) | โ | Proprietary | 20251113 | 0.9213 | 0.9220 | 0.9216 |
| GPT-5(medium) | โ | Proprietary | 20250807 | 0.9207 | 0.9226 | 0.9216 |
| Qwen3-VL-235BA22B-Think | โ | Open | - | 0.9220 | 0.9134 | 0.9177 |
| Qwen3-VL-32B-Think | โ | Open | - | 0.9128 | 0.9161 | 0.9144 |
| GPT-5.1(medium) | โ | Proprietary | 20251113 | 0.9108 | 0.9141 | 0.9125 |
| GPT-5-mini | โ | Proprietary | 20250807 | 0.9108 | 0.9128 | 0.9118 |
| Seed1.5-VL-Think | โ | Proprietary | 20250428 | 0.9056 | 0.9161 | 0.9109 |
| GPT o3 | โ | Proprietary | 20250416 | 0.9056 | 0.9115 | 0.9086 |
| GPT o4 mini | โ | Proprietary | 20250416 | 0.9062 | 0.9075 | 0.9069 |
| InternVL3.5-241B-A28B | โ | Open | - | 0.9003 | 0.9062 | 0.9033 |
| Intern-S1 | โ | Open | - | 0.8938 | 0.8944 | 0.8941 |
| Qwen3-VL-30BA3B-Think | โ | Open | - | 0.8689 | 0.8590 | 0.8689 |
| Qwen3-VL-Plus | ร | Proprietary | 20250923 | 0.8551 | 0.8656 | 0.8604 |
| Qwen3-VL-8B-Think | โ | Open | - | 0.8636 | 0.8564 | 0.8600 |
| Seed1.5-VL | ร | Proprietary | 20250328 | 0.8518 | 0.8669 | 0.8594 |
| Qwen3-VL-235BA22B-Instruct | ร | Open | - | 0.8492 | 0.8675 | 0.8584 |
| InternVL3-78b | ร | Open | - | 0.8531 | 0.8308 | 0.8420 |
| Qwen3-VL-4B-Think | โ | Open | - | 0.8577 | 0.8256 | 0.8416 |
| Intern-S1-mini | โ | Open | - | 0.8521 | 0.8282 | 0.8402 |
| GLM-4.1V-9B-Thinking | โ | Open | - | 0.8392 | 0.8341 | 0.8367 |
| Qwen3-VL-32B-Instruct | ร | Open | - | 0.8315 | 0.8407 | 0.8361 |
| Qwen2.5-VL-72B | ร | Open | - | 0.8341 | 0.8308 | 0.8325 |
| Qwen2.5-VL-Max | ร | Proprietary | 20250813 | 0.8192 | 0.8262 | 0.8227 |
| GPT-5-nano | โ | Proprietary | 20250807 | 0.7980 | 0.7941 | 0.7961 |
| Qwen2.5-VL-32B | ร | Open | - | 0.7980 | 0.7908 | 0.7944 |
| Gemini-2.5-Flash | โ | Proprietary | 20250617 | 0.6925 | 0.8557 | 0.7741 |
| Qwen3-VL-8B-Instruct | ร | Open | - | 0.7548 | 0.7495 | 0.7521 |
| Qwen3-VL-30BA3B-Instruct | ร | Open | - | 0.7456 | 0.7436 | 0.7456 |
| GPT-4o | ร | Proprietary | 20240806 | 0.7462 | 0.7436 | 0.7449 |
| Qwen2.5-VL-7B | ร | Open | - | 0.7082 | 0.7233 | 0.7158 |
| Qwen3-VL-4B-Instruct | ร | Open | - | 0.7023 | 0.7023 | 0.7023 |
| Qwen3-VL-2B-Think | โ | Open | - | 0.6780 | 0.6708 | 0.6744 |
| Qwen2.5-VL-3B | ร | Open | - | 0.6748 | 0.6643 | 0.6696 |
| GPT-4o mini | ร | Proprietary | 20240718 | 0.6636 | 0.6066 | 0.6351 |
| Qwen3-VL-2B-Instruct | ร | Open | - | 0.5711 | 0.5928 | 0.5820 |
| Choice longest answer | - | - | - | 0.4262 | 0.4525 | 0.4394 |
| Deepseek-VL2 | ร | Open | - | 0.4426 | 0.4216 | 0.4321 |
| Random | - | - | - | 0.2500 | 0.2500 | 0.2500 |
We also conducted separate evaluations for different task types (in RxnBench-en).
| Moldel | Think | Weight | API-Version | Type0 | Type1 | Type2 | Type3 | Type4 | Type5 |
|---|---|---|---|---|---|---|---|---|---|
| Gemini-3-Pro-preview | โ | Proprietary | 20251119 | 0.9648 | 0.9246 | 0.9527 | 0.9398 | 0.9322 | 0.7463 |
| GPT-5(high) | โ | Proprietary | 20250807 | 0.9313 | 0.9444 | 0.9527 | 0.9167 | 0.9661 | 0.8358 |
| Gemini-2.5-Pro | โ | Proprietary | 20250617 | 0.9331 | 0.9246 | 0.9459 | 0.9491 | 0.9322 | 0.6343 |
| GPT-5.1(high) | โ | Proprietary | 20251113 | 0.9243 | 0.9524 | 0.9426 | 0.9167 | 0.9661 | 0.7910 |
| GPT-5(medium) | โ | Proprietary | 20250807 | 0.9349 | 0.9325 | 0.9493 | 0.9167 | 0.9492 | 0.7761 |
| Qwen3-VL-235BA22B-Think | โ | Open | - | 0.9190 | 0.9405 | 0.9459 | 0.9213 | 0.9322 | 0.8433 |
| Qwen3-VL-32B-Think | โ | Open | - | 0.9296 | 0.9405 | 0.9426 | 0.9259 | 0.9153 | 0.7015 |
| GPT-5.1(medium) | โ | Proprietary | 20251113 | 0.9243 | 0.9365 | 0.9426 | 0.9167 | 0.9492 | 0.7090 |
| GPT-5-mini | โ | Proprietary | 20250807 | 0.9225 | 0.9325 | 0.9257 | 0.9259 | 0.9831 | 0.7388 |
| Seed1.5-VL-Think | โ | Proprietary | 20250428 | 0.8996 | 0.9365 | 0.9358 | 0.9074 | 0.9153 | 0.8060 |
| GPT o3 | โ | Proprietary | 20250416 | 0.9313 | 0.9325 | 0.9223 | 0.8981 | 0.9492 | 0.7090 |
| GPT o4 mini | โ | Proprietary | 20250416 | 0.6391 | 0.7302 | 0.7500 | 0.6667 | 0.6271 | 0.4627 |
| InternVL3.5-241B-A28B | โ | Open | - | 0.8944 | 0.9127 | 0.9291 | 0.9167 | 0.9153 | 0.8134 |
| Intern-S1 | โ | Open | - | 0.9014 | 0.9127 | 0.9223 | 0.9028 | 0.8814 | 0.7463 |
| Qwen3-VL-30BA3B-Think | โ | Open | - | 0.8732 | 0.8810 | 0.9054 | 0.8843 | 0.9322 | 0.6940 |
| Qwen3-VL-Plus | ร | Proprietary | 20250923 | 0.8275 | 0.8968 | 0.8986 | 0.8565 | 0.9153 | 0.7687 |
| Qwen3-VL-8B-Think | โ | Open | - | 0.8768 | 0.8730 | 0.8885 | 0.9028 | 0.8983 | 0.6567 |
| Seed1.5-VL | ร | Proprietary | 20250328 | 0.9327 | 0.9127 | 0.9122 | 0.8472 | 0.8305 | 0.7015 |
| Qwen3-VL-235BA22B-Instruct | ร | Open | - | 0.8204 | 0.8929 | 0.8986 | 0.8426 | 0.8814 | 0.7761 |
| InternVL3-78b | ร | Open | - | 0.8556 | 0.8730 | 0.8885 | 0.8981 | 0.9153 | 0.6194 |
| Qwen3-VL-4B-Think | โ | Open | - | 0.8838 | 0.8770 | 0.8615 | 0.9074 | 0.8983 | 0.6045 |
| Intern-S1-mini | โ | Open | - | 0.8239 | 0.8690 | 0.8547 | 0.8611 | 0.8475 | 0.6791 |
| GLM-4.1V-9B-Thinking | โ | Open | - | 0.8433 | 0.8690 | 0.8649 | 0.8657 | 0.8814 | 0.6493 |
| Qwen3-VL-32B-Instruct | ร | Open | - | 0.8169 | 0.8571 | 0.8885 | 0.8519 | 0.8305 | 0.6866 |
| Qwen2.5-VL-72B | ร | Open | - | 0.8063 | 0.8063 | 0.8770 | 0.9088 | 0.8102 | 0.9322 |
| Qwen2.5-VL-Max | ร | Proprietary | 20250813 | 0.7958 | 0.8571 | 0.8885 | 0.8194 | 0.8983 | 0.6642 |
| GPT-5-nano | โ | Proprietary | 20250807 | 0.8063 | 0.8452 | 0.8311 | 0.8241 | 0.7797 | 0.5672 |
| Qwen2.5-VL-32B | ร | Open | - | 0.7729 | 0.8413 | 0.8750 | 0.8009 | 0.8305 | 0.6418 |
| Gemini-2.5-Flash | โ | Proprietary | 20250617 | 0.7799 | 0.6111 | 0.6757 | 0.6620 | 0.7627 | 0.5373 |
| Qwen3-VL-8B-Instruct | ร | Open | - | 0.7113 | 0.8175 | 0.8446 | 0.8241 | 0.7627 | 0.5075 |
| Qwen3-VL-30BA3B-Instruct | ร | Open | - | 0.7042 | 0.7937 | 0.8311 | 0.7824 | 0.7119 | 0.5970 |
| GPT-4o | ร | Proprietary | 20240806 | 0.7359 | 0.8175 | 0.7973 | 0.7500 | 0.7627 | 0.5224 |
| Qwen2.5-VL-7B | ร | Open | - | 0.6678 | 0.7659 | 0.8041 | 0.7130 | 0.6441 | 0.5373 |
| Qwen3-VL-4B-Instruct | ร | Open | - | 0.6708 | 0.7302 | 0.7804 | 0.7222 | 0.6610 | 0.5970 |
| Qwen3-VL-2B-Think | โ | Open | - | 0.7342 | 0.6706 | 0.7128 | 0.7083 | 0.6102 | 0.3657 |
| Qwen2.5-VL-3B | ร | Open | - | 0.6426 | 0.7381 | 0.7635 | 0.6898 | 0.6610 | 0.4776 |
| GPT-4o mini | ร | Proprietary | 20240718 | 0.6391 | 0.7302 | 0.7500 | 0.6667 | 0.6271 | 0.4627 |
| Qwen3-VL-2B-Instruct | ร | Open | - | 0.5405 | 0.6190 | 0.6318 | 0.6250 | 0.6102 | 0.3731 |
| Deepseek-VL2 | ร | Open | - | 0.4120 | 0.5040 | 0.4899 | 0.4907 | 0.3729 | 0.3060 |
๐ RxnBench-Doc
A single reaction image often lacks the information needed for full interpretation, requiring contextual text from the literature. Therefore, we also provide a benchmark for chemical reaction literature understanding.
https://huggingface.co/datasets/UniParser/RxnBench-Doc
๐ Citation
our paper coming soon ...
