The dataset viewer is not available for this subset.
Exception: ReadTimeout
Message: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: 178087bc-6e86-4861-b74c-ac6f750ed18f)')
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/config/split_names.py", line 65, in compute_split_names_from_streaming_response
for split in get_dataset_split_names(
^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 343, in get_dataset_split_names
info = get_dataset_config_info(
^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 268, in get_dataset_config_info
builder = load_dataset_builder(
^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1132, in load_dataset_builder
dataset_module = dataset_module_factory(
^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1031, in dataset_module_factory
raise e1 from None
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1004, in dataset_module_factory
).get_module()
^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 632, in get_module
data_files = DataFilesDict.from_patterns(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 689, in from_patterns
else DataFilesList.from_patterns(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 592, in from_patterns
origin_metadata = _get_origin_metadata(data_files, download_config=download_config)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 506, in _get_origin_metadata
return thread_map(
^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/tqdm/contrib/concurrent.py", line 69, in thread_map
return _executor_map(ThreadPoolExecutor, fn, *iterables, **tqdm_kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/tqdm/contrib/concurrent.py", line 51, in _executor_map
return list(tqdm_class(ex.map(fn, *iterables, chunksize=chunksize), **kwargs))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/tqdm/std.py", line 1169, in __iter__
for obj in iterable:
^^^^^^^^
File "/usr/local/lib/python3.12/concurrent/futures/_base.py", line 619, in result_iterator
yield _result_or_cancel(fs.pop())
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/concurrent/futures/_base.py", line 317, in _result_or_cancel
return fut.result(timeout)
^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/concurrent/futures/_base.py", line 456, in result
return self.__get_result()
^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/concurrent/futures/_base.py", line 401, in __get_result
raise self._exception
File "/usr/local/lib/python3.12/concurrent/futures/thread.py", line 59, in run
result = self.fn(*self.args, **self.kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/data_files.py", line 485, in _get_single_origin_metadata
resolved_path = fs.resolve_path(data_file)
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 198, in resolve_path
repo_and_revision_exist, err = self._repo_and_revision_exist(repo_type, repo_id, revision)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 125, in _repo_and_revision_exist
self._api.repo_info(
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
return fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_api.py", line 2816, in repo_info
return method(
^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
return fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_api.py", line 2673, in dataset_info
r = get_session().get(path, headers=headers, timeout=timeout, params=params)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/requests/sessions.py", line 602, in get
return self.request("GET", url, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/requests/sessions.py", line 589, in request
resp = self.send(prep, **send_kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/requests/sessions.py", line 703, in send
r = adapter.send(request, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_http.py", line 96, in send
return super().send(request, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/requests/adapters.py", line 690, in send
raise ReadTimeout(e, request=request)
requests.exceptions.ReadTimeout: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: 178087bc-6e86-4861-b74c-ac6f750ed18f)')Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
GAMMA β Glaucoma grading from Multi-Modality imAges (Challenge dataset)
Image: Dataset Samples. |
Short description
GAMMA is the first public multi-modality glaucoma grading dataset that pairs 2D color fundus photographs with 3D OCT volumes for each sample. It was released as part of the GAMMA challenge (OMIA8 / MICCAI 2021) to encourage algorithms that combine fundus and OCT information for automatic glaucoma grading.
What the dataset contains
- Paired modalities: one macula/optic-disc centered 2D color fundus image and one 3D OCT volume (macula-centered) per sample.
- Samples: 300 paired samples (fundus + OCT) corresponding to 276 patients.
- Labeling / ground truth: each sample has a glaucoma grade (normal / early / progressive), derived from visual field mean deviation (MD) criteria; auxiliary labels include optic disc & cup (OD/OC) segmentation masks and fovea coordinates on the fundus images.
- Demographics: 276 Chinese patients, age range 19β77, mean β 40.6 years; female β 42%.
- Balanced classes: glaucoma ~50% of samples; within glaucoma: ~52% early, ~29% intermediate, ~19% advanced (intermediate+advanced grouped as βprogressiveβ in challenge tasks).
- Acquisition devices: OCT volumes acquired using Topcon DRI OCT Triton; fundus images captured by KOWA and Topcon TRC-NW400 cameras (macula or midpoint between disc and macula).
- OCT spec: 3Γ3 mm en-face FOV; each volume contains 256 B-scans (cross-sectional frames).
- Image quality: manually checked; dataset split into three challenge sets (training, preliminary, final) with ~100 pairs per set.
- License / access: publicly available via the GAMMA grand-challenge page; dataset distributed under CC BY-NC-ND (Attribution-NonCommercial-NoDerivs).
- Official dataset page / access: https://gamma.grand-challenge.org/
Intended tasks
Primary:
- Glaucoma grading from paired fundus + OCT (predict: normal / early-glaucoma / progressive-glaucoma).
Auxiliary:
- OD/OC segmentation (optic disc and optic cup masks on fundus images).
- Fovea localization (x,y coordinates).
Researchers may optionally use the auxiliary tasks to boost the main grading performance.
Dataset structure (typical)
GAMMA/
βββ images/
β βββ fundus/ # fundus images (JPEG/PNG)
β β βββ sample_0001_fundus.jpg
β β βββ ...
β βββ oct/ # OCT volumes (folder or volume files per sample)
β βββ sample_0001_oct/ # 256 B-scans or a volume file (format described in README_original)
β βββ ...
βββ labels/
β βββ grades.csv # sample_id, grade (normal/early/progressive), MD values, other clinical metadata
β βββ fovea_coords.csv # sample_id, x, y
β βββ od_oc_masks/ # per-sample masks (optional; may be in separate archive)
β βββ sample_0001_od.png
β βββ ...
βββ README_original.txt
How samples were graded
Glaucoma grading ground truth was determined using visual field mean deviation (MD) thresholds from visual field tests performed the same day as OCT:
- Early: MD > β6 dB
- Intermediate: β12 dB < MD β€ β6 dB
- Advanced: MD β€ β12 dB
For the main challenge, intermediate + advanced were grouped as progressive-glaucoma.
Size & splits
- Total paired samples: 300 (fundus + OCT)
- Patients: 276 (some bilateral samples)
- Class distribution: ~50% glaucoma / 50% non-glaucoma; within glaucoma: early β 52%, intermediate β 28.7%, advanced β 19.3%
- Challenge splits: approximately 100 pairs for training, 100 for preliminary, 100 for final test (samples from each category distributed across splits).
Recommended uses & notes
- Use paired modalities (fundus + OCT) for multimodal fusion models β combining morphological cues (fundus OD/OC, vCDR) and structural OCT features (RNFL thickness) improves grading.
- Auxiliary tasks (OD/OC masks, fovea) are provided to support explainability and localized feature extraction.
- Respect the CC BY-NC-ND license for redistribution and commercial restrictions.
Citation / sources
Please cite the GAMMA challenge paper and dataset when using the data:
- Wu J., Fang H., Li F., Fu H., Lin F., et al., βGAMMA challenge: Glaucoma grAding from Multi-Modality imAges.β (paper / challenge summary). arXiv:2202.06511; journal: Medical Image Analysis (2023). DOI: 10.1016/j.media.2023.102938.
- Official dataset page (host & download): https://gamma.grand-challenge.org/
Primary references used to prepare this README:
- arXiv / GAMMA challenge paper: https://arxiv.org/abs/2202.06511
- Final journal version / PubMed entry: https://pubmed.ncbi.nlm.nih.gov/37806020/
- GAMMA challenge (Grand Challenge) dataset page: https://gamma.grand-challenge.org/
- Downloads last month
- 29