SentenceTransformer based on albert/albert-base-v2
This is a sentence-transformers model finetuned from albert/albert-base-v2 on the en-pl dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: albert/albert-base-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Languages: en, multilingual, ar, bg, ca, cs, da, de, el, es, et, fa, fi, fr, gl, gu, he, hi, hr, hu, hy, id, it, ja, ka, ko, ku, lt, lv, mk, mn, mr, ms, my, nb, nl, pl, pt, ro, ru, sk, sl, sq, sr, sv, th, tr, uk, ur, vi, zh
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'AlbertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("jansowa/albert-base-v2-multilingual-en-pl")
# Run inference
sentences = [
'This is a diagram of the U.S. counterinsurgency strategy in Afghanistan.',
'To jest diagram przeciwpartyzanckiej strategii w Afganistanie.',
'Biedni ludzie, ludzie, których prawa człowieka zostały naruszone, brzemię tego to strata godności. Brak godności.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.9598, 0.5281],
# [0.9598, 1.0000, 0.5946],
# [0.5281, 0.5946, 1.0000]])
Evaluation
Metrics
Knowledge Distillation
- Dataset:
en-pl - Evaluated with
MSEEvaluator
| Metric | Value |
|---|---|
| negative_mse | -37.0147 |
Translation
- Dataset:
en-pl - Evaluated with
TranslationEvaluator
| Metric | Value |
|---|---|
| src2trg_accuracy | 0.7046 |
| trg2src_accuracy | 0.6613 |
| mean_accuracy | 0.683 |
Training Details
Training Dataset
en-pl
- Dataset: en-pl at 0c70bc6
- Size: 292,290 training samples
- Columns:
english,non_english, andlabel - Approximate statistics based on the first 1000 samples:
english non_english label type string string list details - min: 4 tokens
- mean: 24.47 tokens
- max: 256 tokens
- min: 5 tokens
- mean: 40.48 tokens
- max: 256 tokens
- size: 768 elements
- Samples:
english non_english label And then there are certain conceptual things that can also benefit from hand calculating, but I think they're relatively small in number.Są też pewne zadania koncepcyjne, w których ręczne kalkulacje mogą być przydatne, ale jest ich stosunkowo niewiele.[0.1842687577009201, -0.27380749583244324, 1.380724310874939, 0.5485912561416626, -0.5771370530128479, ...]One thing I often ask about is ancient Greek and how this relates.Często zadaję pytania o starożytną Grekę i co do tego ma.[-0.22509485483169556, -0.8029794096946716, -0.26132631301879883, -0.1386972814798355, -0.4966896176338196, ...]See, the thing we're doing right now is we're forcing people to learn mathematics.Zwróćcie uwagę, to co teraz robimy jest zmuszaniem ludzi do nauki matematyki.[0.701093316078186, -0.31419914960861206, -0.8785677552223206, -0.3886241614818573, 0.7142088413238525, ...] - Loss:
MSELoss
Evaluation Dataset
en-pl
- Dataset: en-pl at 0c70bc6
- Size: 992 evaluation samples
- Columns:
english,non_english, andlabel - Approximate statistics based on the first 992 samples:
english non_english label type string string list details - min: 4 tokens
- mean: 25.03 tokens
- max: 253 tokens
- min: 5 tokens
- mean: 45.15 tokens
- max: 256 tokens
- size: 768 elements
- Samples:
english non_english label Thank you so much, Chris.Bardzo dziękuję, Chris.[0.26128441095352173, -0.8462327122688293, -0.4199201762676239, 0.5228638648986816, 1.1514642238616943, ...]And it's truly a great honor to have the opportunity to come to this stage twice; I'm extremely grateful.To prawdziwy zaszczyt mieć możliwość drugi raz stanąć w tym miejscu. Jestem niezwykle wdzięczny.[0.22651851177215576, 0.283356636762619, -1.0012000799179077, -0.013265828602015972, 0.08300188928842545, ...]I have been blown away by this conference, and I want to thank all of you for the many nice comments about what I had to say the other night.Jestem zachwycony tą konferencją. Chce Wam wszystkim podziękować za miłe komentarze dotyczące mojej wypowiedzi poprzedniego wieczoru.[0.17416058480739594, -0.40953880548477173, -0.62795090675354, 0.35556134581565857, 0.40010693669319153, ...] - Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepslearning_rate: 2e-05num_train_epochs: 1warmup_ratio: 0.1fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 8per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
Click to expand
| Epoch | Step | Training Loss | en-pl loss | en-pl_negative_mse | en-pl_mean_accuracy |
|---|---|---|---|---|---|
| 0.0027 | 100 | 1.1564 | - | - | - |
| 0.0055 | 200 | 0.8704 | - | - | - |
| 0.0082 | 300 | 0.6851 | - | - | - |
| 0.0109 | 400 | 0.5806 | - | - | - |
| 0.0137 | 500 | 0.5265 | - | - | - |
| 0.0164 | 600 | 0.4866 | - | - | - |
| 0.0192 | 700 | 0.4744 | - | - | - |
| 0.0219 | 800 | 0.4665 | - | - | - |
| 0.0246 | 900 | 0.4637 | - | - | - |
| 0.0274 | 1000 | 0.4616 | - | - | - |
| 0.0301 | 1100 | 0.461 | - | - | - |
| 0.0328 | 1200 | 0.4624 | - | - | - |
| 0.0356 | 1300 | 0.4605 | - | - | - |
| 0.0383 | 1400 | 0.4596 | - | - | - |
| 0.0411 | 1500 | 0.459 | - | - | - |
| 0.0438 | 1600 | 0.455 | - | - | - |
| 0.0465 | 1700 | 0.4567 | - | - | - |
| 0.0493 | 1800 | 0.4567 | - | - | - |
| 0.0520 | 1900 | 0.4541 | - | - | - |
| 0.0547 | 2000 | 0.4559 | - | - | - |
| 0.0575 | 2100 | 0.456 | - | - | - |
| 0.0602 | 2200 | 0.4535 | - | - | - |
| 0.0629 | 2300 | 0.4495 | - | - | - |
| 0.0657 | 2400 | 0.4515 | - | - | - |
| 0.0684 | 2500 | 0.4472 | - | - | - |
| 0.0712 | 2600 | 0.4486 | - | - | - |
| 0.0739 | 2700 | 0.4468 | - | - | - |
| 0.0766 | 2800 | 0.4432 | - | - | - |
| 0.0794 | 2900 | 0.4443 | - | - | - |
| 0.0821 | 3000 | 0.4437 | - | - | - |
| 0.0848 | 3100 | 0.439 | - | - | - |
| 0.0876 | 3200 | 0.4379 | - | - | - |
| 0.0903 | 3300 | 0.4345 | - | - | - |
| 0.0931 | 3400 | 0.4335 | - | - | - |
| 0.0958 | 3500 | 0.4322 | - | - | - |
| 0.0985 | 3600 | 0.4326 | - | - | - |
| 0.1013 | 3700 | 0.4319 | - | - | - |
| 0.1040 | 3800 | 0.4298 | - | - | - |
| 0.1067 | 3900 | 0.4243 | - | - | - |
| 0.1095 | 4000 | 0.4243 | - | - | - |
| 0.1122 | 4100 | 0.4226 | - | - | - |
| 0.1150 | 4200 | 0.4216 | - | - | - |
| 0.1177 | 4300 | 0.4208 | - | - | - |
| 0.1204 | 4400 | 0.4245 | - | - | - |
| 0.1232 | 4500 | 0.4236 | - | - | - |
| 0.1259 | 4600 | 0.4176 | - | - | - |
| 0.1286 | 4700 | 0.4175 | - | - | - |
| 0.1314 | 4800 | 0.4148 | - | - | - |
| 0.1341 | 4900 | 0.4163 | - | - | - |
| 0.1368 | 5000 | 0.4127 | 0.4204 | -44.0072 | 0.1240 |
| 0.1396 | 5100 | 0.4089 | - | - | - |
| 0.1423 | 5200 | 0.4145 | - | - | - |
| 0.1451 | 5300 | 0.4084 | - | - | - |
| 0.1478 | 5400 | 0.4082 | - | - | - |
| 0.1505 | 5500 | 0.4062 | - | - | - |
| 0.1533 | 5600 | 0.4056 | - | - | - |
| 0.1560 | 5700 | 0.4039 | - | - | - |
| 0.1587 | 5800 | 0.4059 | - | - | - |
| 0.1615 | 5900 | 0.405 | - | - | - |
| 0.1642 | 6000 | 0.4003 | - | - | - |
| 0.1670 | 6100 | 0.4003 | - | - | - |
| 0.1697 | 6200 | 0.3994 | - | - | - |
| 0.1724 | 6300 | 0.4 | - | - | - |
| 0.1752 | 6400 | 0.3965 | - | - | - |
| 0.1779 | 6500 | 0.3964 | - | - | - |
| 0.1806 | 6600 | 0.3948 | - | - | - |
| 0.1834 | 6700 | 0.3955 | - | - | - |
| 0.1861 | 6800 | 0.3959 | - | - | - |
| 0.1888 | 6900 | 0.3942 | - | - | - |
| 0.1916 | 7000 | 0.3922 | - | - | - |
| 0.1943 | 7100 | 0.3933 | - | - | - |
| 0.1971 | 7200 | 0.395 | - | - | - |
| 0.1998 | 7300 | 0.3932 | - | - | - |
| 0.2025 | 7400 | 0.3881 | - | - | - |
| 0.2053 | 7500 | 0.3884 | - | - | - |
| 0.2080 | 7600 | 0.3862 | - | - | - |
| 0.2107 | 7700 | 0.3864 | - | - | - |
| 0.2135 | 7800 | 0.3879 | - | - | - |
| 0.2162 | 7900 | 0.3895 | - | - | - |
| 0.2190 | 8000 | 0.3847 | - | - | - |
| 0.2217 | 8100 | 0.3856 | - | - | - |
| 0.2244 | 8200 | 0.3863 | - | - | - |
| 0.2272 | 8300 | 0.3859 | - | - | - |
| 0.2299 | 8400 | 0.3821 | - | - | - |
| 0.2326 | 8500 | 0.3825 | - | - | - |
| 0.2354 | 8600 | 0.3799 | - | - | - |
| 0.2381 | 8700 | 0.381 | - | - | - |
| 0.2409 | 8800 | 0.3824 | - | - | - |
| 0.2436 | 8900 | 0.3811 | - | - | - |
| 0.2463 | 9000 | 0.3774 | - | - | - |
| 0.2491 | 9100 | 0.3781 | - | - | - |
| 0.2518 | 9200 | 0.3792 | - | - | - |
| 0.2545 | 9300 | 0.3769 | - | - | - |
| 0.2573 | 9400 | 0.376 | - | - | - |
| 0.2600 | 9500 | 0.3799 | - | - | - |
| 0.2627 | 9600 | 0.3737 | - | - | - |
| 0.2655 | 9700 | 0.3757 | - | - | - |
| 0.2682 | 9800 | 0.3753 | - | - | - |
| 0.2710 | 9900 | 0.3761 | - | - | - |
| 0.2737 | 10000 | 0.3701 | 0.3808 | -41.4255 | 0.3191 |
| 0.2764 | 10100 | 0.3718 | - | - | - |
| 0.2792 | 10200 | 0.3701 | - | - | - |
| 0.2819 | 10300 | 0.3704 | - | - | - |
| 0.2846 | 10400 | 0.3724 | - | - | - |
| 0.2874 | 10500 | 0.3725 | - | - | - |
| 0.2901 | 10600 | 0.3726 | - | - | - |
| 0.2929 | 10700 | 0.3679 | - | - | - |
| 0.2956 | 10800 | 0.3671 | - | - | - |
| 0.2983 | 10900 | 0.368 | - | - | - |
| 0.3011 | 11000 | 0.3711 | - | - | - |
| 0.3038 | 11100 | 0.3696 | - | - | - |
| 0.3065 | 11200 | 0.3677 | - | - | - |
| 0.3093 | 11300 | 0.3651 | - | - | - |
| 0.3120 | 11400 | 0.365 | - | - | - |
| 0.3147 | 11500 | 0.3635 | - | - | - |
| 0.3175 | 11600 | 0.3595 | - | - | - |
| 0.3202 | 11700 | 0.363 | - | - | - |
| 0.3230 | 11800 | 0.3644 | - | - | - |
| 0.3257 | 11900 | 0.3649 | - | - | - |
| 0.3284 | 12000 | 0.3623 | - | - | - |
| 0.3312 | 12100 | 0.3634 | - | - | - |
| 0.3339 | 12200 | 0.3616 | - | - | - |
| 0.3366 | 12300 | 0.3644 | - | - | - |
| 0.3394 | 12400 | 0.3608 | - | - | - |
| 0.3421 | 12500 | 0.3601 | - | - | - |
| 0.3449 | 12600 | 0.3623 | - | - | - |
| 0.3476 | 12700 | 0.3606 | - | - | - |
| 0.3503 | 12800 | 0.3585 | - | - | - |
| 0.3531 | 12900 | 0.3622 | - | - | - |
| 0.3558 | 13000 | 0.361 | - | - | - |
| 0.3585 | 13100 | 0.3595 | - | - | - |
| 0.3613 | 13200 | 0.3569 | - | - | - |
| 0.3640 | 13300 | 0.3597 | - | - | - |
| 0.3668 | 13400 | 0.3586 | - | - | - |
| 0.3695 | 13500 | 0.3577 | - | - | - |
| 0.3722 | 13600 | 0.3569 | - | - | - |
| 0.3750 | 13700 | 0.3546 | - | - | - |
| 0.3777 | 13800 | 0.3546 | - | - | - |
| 0.3804 | 13900 | 0.3552 | - | - | - |
| 0.3832 | 14000 | 0.3535 | - | - | - |
| 0.3859 | 14100 | 0.3566 | - | - | - |
| 0.3886 | 14200 | 0.3556 | - | - | - |
| 0.3914 | 14300 | 0.3548 | - | - | - |
| 0.3941 | 14400 | 0.3529 | - | - | - |
| 0.3969 | 14500 | 0.3549 | - | - | - |
| 0.3996 | 14600 | 0.3539 | - | - | - |
| 0.4023 | 14700 | 0.3508 | - | - | - |
| 0.4051 | 14800 | 0.3536 | - | - | - |
| 0.4078 | 14900 | 0.3528 | - | - | - |
| 0.4105 | 15000 | 0.3548 | 0.3599 | -40.0086 | 0.4451 |
| 0.4133 | 15100 | 0.3523 | - | - | - |
| 0.4160 | 15200 | 0.3483 | - | - | - |
| 0.4188 | 15300 | 0.3507 | - | - | - |
| 0.4215 | 15400 | 0.3507 | - | - | - |
| 0.4242 | 15500 | 0.3516 | - | - | - |
| 0.4270 | 15600 | 0.3503 | - | - | - |
| 0.4297 | 15700 | 0.3476 | - | - | - |
| 0.4324 | 15800 | 0.3484 | - | - | - |
| 0.4352 | 15900 | 0.3487 | - | - | - |
| 0.4379 | 16000 | 0.3473 | - | - | - |
| 0.4406 | 16100 | 0.3501 | - | - | - |
| 0.4434 | 16200 | 0.3481 | - | - | - |
| 0.4461 | 16300 | 0.3462 | - | - | - |
| 0.4489 | 16400 | 0.347 | - | - | - |
| 0.4516 | 16500 | 0.3458 | - | - | - |
| 0.4543 | 16600 | 0.3485 | - | - | - |
| 0.4571 | 16700 | 0.3461 | - | - | - |
| 0.4598 | 16800 | 0.3483 | - | - | - |
| 0.4625 | 16900 | 0.3456 | - | - | - |
| 0.4653 | 17000 | 0.3454 | - | - | - |
| 0.4680 | 17100 | 0.344 | - | - | - |
| 0.4708 | 17200 | 0.344 | - | - | - |
| 0.4735 | 17300 | 0.3417 | - | - | - |
| 0.4762 | 17400 | 0.3469 | - | - | - |
| 0.4790 | 17500 | 0.3465 | - | - | - |
| 0.4817 | 17600 | 0.3438 | - | - | - |
| 0.4844 | 17700 | 0.3437 | - | - | - |
| 0.4872 | 17800 | 0.3413 | - | - | - |
| 0.4899 | 17900 | 0.3425 | - | - | - |
| 0.4927 | 18000 | 0.3429 | - | - | - |
| 0.4954 | 18100 | 0.3449 | - | - | - |
| 0.4981 | 18200 | 0.3425 | - | - | - |
| 0.5009 | 18300 | 0.3431 | - | - | - |
| 0.5036 | 18400 | 0.3431 | - | - | - |
| 0.5063 | 18500 | 0.3429 | - | - | - |
| 0.5091 | 18600 | 0.343 | - | - | - |
| 0.5118 | 18700 | 0.3413 | - | - | - |
| 0.5145 | 18800 | 0.3425 | - | - | - |
| 0.5173 | 18900 | 0.3386 | - | - | - |
| 0.5200 | 19000 | 0.3415 | - | - | - |
| 0.5228 | 19100 | 0.341 | - | - | - |
| 0.5255 | 19200 | 0.3395 | - | - | - |
| 0.5282 | 19300 | 0.3413 | - | - | - |
| 0.5310 | 19400 | 0.3412 | - | - | - |
| 0.5337 | 19500 | 0.3387 | - | - | - |
| 0.5364 | 19600 | 0.3413 | - | - | - |
| 0.5392 | 19700 | 0.3383 | - | - | - |
| 0.5419 | 19800 | 0.3414 | - | - | - |
| 0.5447 | 19900 | 0.3377 | - | - | - |
| 0.5474 | 20000 | 0.341 | 0.3462 | -38.8721 | 0.5459 |
| 0.5501 | 20100 | 0.3364 | - | - | - |
| 0.5529 | 20200 | 0.3377 | - | - | - |
| 0.5556 | 20300 | 0.3362 | - | - | - |
| 0.5583 | 20400 | 0.338 | - | - | - |
| 0.5611 | 20500 | 0.3326 | - | - | - |
| 0.5638 | 20600 | 0.3362 | - | - | - |
| 0.5665 | 20700 | 0.3368 | - | - | - |
| 0.5693 | 20800 | 0.3379 | - | - | - |
| 0.5720 | 20900 | 0.3362 | - | - | - |
| 0.5748 | 21000 | 0.334 | - | - | - |
| 0.5775 | 21100 | 0.3389 | - | - | - |
| 0.5802 | 21200 | 0.3361 | - | - | - |
| 0.5830 | 21300 | 0.3358 | - | - | - |
| 0.5857 | 21400 | 0.3333 | - | - | - |
| 0.5884 | 21500 | 0.3349 | - | - | - |
| 0.5912 | 21600 | 0.3332 | - | - | - |
| 0.5939 | 21700 | 0.3354 | - | - | - |
| 0.5967 | 21800 | 0.3334 | - | - | - |
| 0.5994 | 21900 | 0.3324 | - | - | - |
| 0.6021 | 22000 | 0.3317 | - | - | - |
| 0.6049 | 22100 | 0.3312 | - | - | - |
| 0.6076 | 22200 | 0.3352 | - | - | - |
| 0.6103 | 22300 | 0.333 | - | - | - |
| 0.6131 | 22400 | 0.3358 | - | - | - |
| 0.6158 | 22500 | 0.332 | - | - | - |
| 0.6186 | 22600 | 0.3321 | - | - | - |
| 0.6213 | 22700 | 0.3327 | - | - | - |
| 0.6240 | 22800 | 0.3312 | - | - | - |
| 0.6268 | 22900 | 0.3317 | - | - | - |
| 0.6295 | 23000 | 0.3277 | - | - | - |
| 0.6322 | 23100 | 0.3334 | - | - | - |
| 0.6350 | 23200 | 0.3313 | - | - | - |
| 0.6377 | 23300 | 0.331 | - | - | - |
| 0.6404 | 23400 | 0.3326 | - | - | - |
| 0.6432 | 23500 | 0.3325 | - | - | - |
| 0.6459 | 23600 | 0.3288 | - | - | - |
| 0.6487 | 23700 | 0.331 | - | - | - |
| 0.6514 | 23800 | 0.3315 | - | - | - |
| 0.6541 | 23900 | 0.3312 | - | - | - |
| 0.6569 | 24000 | 0.329 | - | - | - |
| 0.6596 | 24100 | 0.3263 | - | - | - |
| 0.6623 | 24200 | 0.3326 | - | - | - |
| 0.6651 | 24300 | 0.3297 | - | - | - |
| 0.6678 | 24400 | 0.3251 | - | - | - |
| 0.6706 | 24500 | 0.3309 | - | - | - |
| 0.6733 | 24600 | 0.3302 | - | - | - |
| 0.6760 | 24700 | 0.3274 | - | - | - |
| 0.6788 | 24800 | 0.3278 | - | - | - |
| 0.6815 | 24900 | 0.3268 | - | - | - |
| 0.6842 | 25000 | 0.3283 | 0.3376 | -38.1403 | 0.6129 |
| 0.6870 | 25100 | 0.3278 | - | - | - |
| 0.6897 | 25200 | 0.3285 | - | - | - |
| 0.6924 | 25300 | 0.3288 | - | - | - |
| 0.6952 | 25400 | 0.3275 | - | - | - |
| 0.6979 | 25500 | 0.327 | - | - | - |
| 0.7007 | 25600 | 0.328 | - | - | - |
| 0.7034 | 25700 | 0.3292 | - | - | - |
| 0.7061 | 25800 | 0.3255 | - | - | - |
| 0.7089 | 25900 | 0.3279 | - | - | - |
| 0.7116 | 26000 | 0.3276 | - | - | - |
| 0.7143 | 26100 | 0.3254 | - | - | - |
| 0.7171 | 26200 | 0.3254 | - | - | - |
| 0.7198 | 26300 | 0.3237 | - | - | - |
| 0.7226 | 26400 | 0.3261 | - | - | - |
| 0.7253 | 26500 | 0.3247 | - | - | - |
| 0.7280 | 26600 | 0.3277 | - | - | - |
| 0.7308 | 26700 | 0.324 | - | - | - |
| 0.7335 | 26800 | 0.3262 | - | - | - |
| 0.7362 | 26900 | 0.3223 | - | - | - |
| 0.7390 | 27000 | 0.3205 | - | - | - |
| 0.7417 | 27100 | 0.3265 | - | - | - |
| 0.7445 | 27200 | 0.3234 | - | - | - |
| 0.7472 | 27300 | 0.3228 | - | - | - |
| 0.7499 | 27400 | 0.3202 | - | - | - |
| 0.7527 | 27500 | 0.3234 | - | - | - |
| 0.7554 | 27600 | 0.3239 | - | - | - |
| 0.7581 | 27700 | 0.323 | - | - | - |
| 0.7609 | 27800 | 0.3232 | - | - | - |
| 0.7636 | 27900 | 0.324 | - | - | - |
| 0.7663 | 28000 | 0.3239 | - | - | - |
| 0.7691 | 28100 | 0.3224 | - | - | - |
| 0.7718 | 28200 | 0.3258 | - | - | - |
| 0.7746 | 28300 | 0.3259 | - | - | - |
| 0.7773 | 28400 | 0.3229 | - | - | - |
| 0.7800 | 28500 | 0.3266 | - | - | - |
| 0.7828 | 28600 | 0.3212 | - | - | - |
| 0.7855 | 28700 | 0.3243 | - | - | - |
| 0.7882 | 28800 | 0.3237 | - | - | - |
| 0.7910 | 28900 | 0.3225 | - | - | - |
| 0.7937 | 29000 | 0.3233 | - | - | - |
| 0.7965 | 29100 | 0.3249 | - | - | - |
| 0.7992 | 29200 | 0.3246 | - | - | - |
| 0.8019 | 29300 | 0.321 | - | - | - |
| 0.8047 | 29400 | 0.3263 | - | - | - |
| 0.8074 | 29500 | 0.3244 | - | - | - |
| 0.8101 | 29600 | 0.3232 | - | - | - |
| 0.8129 | 29700 | 0.3212 | - | - | - |
| 0.8156 | 29800 | 0.3235 | - | - | - |
| 0.8183 | 29900 | 0.3197 | - | - | - |
| 0.8211 | 30000 | 0.3219 | 0.3297 | -37.3467 | 0.6714 |
| 0.8238 | 30100 | 0.3238 | - | - | - |
| 0.8266 | 30200 | 0.3243 | - | - | - |
| 0.8293 | 30300 | 0.3238 | - | - | - |
| 0.8320 | 30400 | 0.3194 | - | - | - |
| 0.8348 | 30500 | 0.3198 | - | - | - |
| 0.8375 | 30600 | 0.3227 | - | - | - |
| 0.8402 | 30700 | 0.3199 | - | - | - |
| 0.8430 | 30800 | 0.3209 | - | - | - |
| 0.8457 | 30900 | 0.3212 | - | - | - |
| 0.8485 | 31000 | 0.3182 | - | - | - |
| 0.8512 | 31100 | 0.3214 | - | - | - |
| 0.8539 | 31200 | 0.3203 | - | - | - |
| 0.8567 | 31300 | 0.3246 | - | - | - |
| 0.8594 | 31400 | 0.3171 | - | - | - |
| 0.8621 | 31500 | 0.3208 | - | - | - |
| 0.8649 | 31600 | 0.3203 | - | - | - |
| 0.8676 | 31700 | 0.319 | - | - | - |
| 0.8704 | 31800 | 0.3179 | - | - | - |
| 0.8731 | 31900 | 0.3187 | - | - | - |
| 0.8758 | 32000 | 0.3197 | - | - | - |
| 0.8786 | 32100 | 0.319 | - | - | - |
| 0.8813 | 32200 | 0.3214 | - | - | - |
| 0.8840 | 32300 | 0.3205 | - | - | - |
| 0.8868 | 32400 | 0.3179 | - | - | - |
| 0.8895 | 32500 | 0.3197 | - | - | - |
| 0.8922 | 32600 | 0.3197 | - | - | - |
| 0.8950 | 32700 | 0.3187 | - | - | - |
| 0.8977 | 32800 | 0.3195 | - | - | - |
| 0.9005 | 32900 | 0.3193 | - | - | - |
| 0.9032 | 33000 | 0.3188 | - | - | - |
| 0.9059 | 33100 | 0.3166 | - | - | - |
| 0.9087 | 33200 | 0.3186 | - | - | - |
| 0.9114 | 33300 | 0.3182 | - | - | - |
| 0.9141 | 33400 | 0.3167 | - | - | - |
| 0.9169 | 33500 | 0.3203 | - | - | - |
| 0.9196 | 33600 | 0.3189 | - | - | - |
| 0.9224 | 33700 | 0.3177 | - | - | - |
| 0.9251 | 33800 | 0.3174 | - | - | - |
| 0.9278 | 33900 | 0.3194 | - | - | - |
| 0.9306 | 34000 | 0.318 | - | - | - |
| 0.9333 | 34100 | 0.3171 | - | - | - |
| 0.9360 | 34200 | 0.3185 | - | - | - |
| 0.9388 | 34300 | 0.3175 | - | - | - |
| 0.9415 | 34400 | 0.3181 | - | - | - |
| 0.9442 | 34500 | 0.3219 | - | - | - |
| 0.9470 | 34600 | 0.3137 | - | - | - |
| 0.9497 | 34700 | 0.3164 | - | - | - |
| 0.9525 | 34800 | 0.3161 | - | - | - |
| 0.9552 | 34900 | 0.3177 | - | - | - |
| 0.9579 | 35000 | 0.3165 | 0.3260 | -37.0147 | 0.6830 |
| 0.9607 | 35100 | 0.3181 | - | - | - |
| 0.9634 | 35200 | 0.3161 | - | - | - |
| 0.9661 | 35300 | 0.3156 | - | - | - |
| 0.9689 | 35400 | 0.3152 | - | - | - |
| 0.9716 | 35500 | 0.3186 | - | - | - |
| 0.9744 | 35600 | 0.3197 | - | - | - |
| 0.9771 | 35700 | 0.3191 | - | - | - |
| 0.9798 | 35800 | 0.3161 | - | - | - |
| 0.9826 | 35900 | 0.3184 | - | - | - |
| 0.9853 | 36000 | 0.3166 | - | - | - |
| 0.9880 | 36100 | 0.316 | - | - | - |
| 0.9908 | 36200 | 0.3194 | - | - | - |
| 0.9935 | 36300 | 0.3158 | - | - | - |
| 0.9963 | 36400 | 0.3187 | - | - | - |
| 0.9990 | 36500 | 0.317 | - | - | - |
Framework Versions
- Python: 3.13.2
- Sentence Transformers: 5.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu126
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
- Downloads last month
- 10
Model tree for jansowa/albert-base-v2-multilingual-en-pl
Base model
albert/albert-base-v2Dataset used to train jansowa/albert-base-v2-multilingual-en-pl
Evaluation results
- Negative Mse on en plself-reported-37.015
- Src2Trg Accuracy on en plself-reported0.705
- Trg2Src Accuracy on en plself-reported0.661
- Mean Accuracy on en plself-reported0.683