- Distillation and Pruning for Scalable Self-Supervised Representation-Based Speech Quality Assessment In this paper, we investigate distillation and pruning methods to reduce model size for non-intrusive speech quality assessment based on self-supervised representations. Our experiments build on XLS-R-SQA, a speech quality assessment model using wav2vec 2.0 XLS-R embeddings. We retrain this model on a large compilation of mean opinion score datasets, encompassing over 100,000 labeled clips. For distillation, using this model as a teacher, we generate pseudo-labels on unlabeled degraded speech signals and train student models of varying sizes. For pruning, we use a data-driven strategy. While data-driven pruning performs better at larger model sizes, distillation on unlabeled data is more effective for smaller model sizes. Distillation can halve the gap between the baseline's correlation with ground-truth MOS labels and that of the XLS-R-based teacher model, while reducing model size by two orders of magnitude compared to the teacher model. 2 authors · Feb 7
3 XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale This paper presents XLS-R, a large-scale model for cross-lingual speech representation learning based on wav2vec 2.0. We train models with up to 2B parameters on nearly half a million hours of publicly available speech audio in 128 languages, an order of magnitude more public data than the largest known prior work. Our evaluation covers a wide range of tasks, domains, data regimes and languages, both high and low-resource. On the CoVoST-2 speech translation benchmark, we improve the previous state of the art by an average of 7.4 BLEU over 21 translation directions into English. For speech recognition, XLS-R improves over the best known prior work on BABEL, MLS, CommonVoice as well as VoxPopuli, lowering error rates by 14-34% relative on average. XLS-R also sets a new state of the art on VoxLingua107 language identification. Moreover, we show that with sufficient model size, cross-lingual pretraining can outperform English-only pretraining when translating English speech into other languages, a setting which favors monolingual pretraining. We hope XLS-R can help to improve speech processing tasks for many more languages of the world. 13 authors · Nov 17, 2021
- Performance Comparison of Pre-trained Models for Speech-to-Text in Turkish: Whisper-Small and Wav2Vec2-XLS-R-300M In this study, the performances of the Whisper-Small and Wav2Vec2-XLS-R-300M models which are two pre-trained multilingual models for speech to text were examined for the Turkish language. Mozilla Common Voice version 11.0 which is prepared in Turkish language and is an open-source data set, was used in the study. The multilingual models, Whisper- Small and Wav2Vec2-XLS-R-300M were fine-tuned with this data set which contains a small amount of data. The speech to text performance of the two models was compared. WER values are calculated as 0.28 and 0.16 for the Wav2Vec2-XLS- R-300M and the Whisper-Small models respectively. In addition, the performances of the models were examined with the test data prepared with call center records that were not included in the training and validation dataset. 4 authors · Jul 6, 2023
- Joint Prediction and Denoising for Large-scale Multilingual Self-supervised Learning Multilingual self-supervised learning (SSL) has often lagged behind state-of-the-art (SOTA) methods due to the expenses and complexity required to handle many languages. This further harms the reproducibility of SSL, which is already limited to few research groups due to its resource usage. We show that more powerful techniques can actually lead to more efficient pre-training, opening SSL to more research groups. We propose WavLabLM, which extends WavLM's joint prediction and denoising to 40k hours of data across 136 languages. To build WavLabLM, we devise a novel multi-stage pre-training method, designed to address the language imbalance of multilingual data. WavLabLM achieves comparable performance to XLS-R on ML-SUPERB with less than 10% of the training data, making SSL realizable with academic compute. We show that further efficiency can be achieved with a vanilla HuBERT Base model, which can maintain 94% of XLS-R's performance with only 3% of the data, 4 GPUs, and limited trials. We open-source all code and models in ESPnet. 9 authors · Sep 26, 2023
- ASR advancements for indigenous languages: Quechua, Guarani, Bribri, Kotiria, and Wa'ikhana Indigenous languages are a fundamental legacy in the development of human communication, embodying the unique identity and culture of local communities of America. The Second AmericasNLP Competition Track 1 of NeurIPS 2022 proposed developing automatic speech recognition (ASR) systems for five indigenous languages: Quechua, Guarani, Bribri, Kotiria, and Wa'ikhana. In this paper, we propose a reliable ASR model for each target language by crawling speech corpora spanning diverse sources and applying data augmentation methods that resulted in the winning approach in this competition. To achieve this, we systematically investigated the impact of different hyperparameters by a Bayesian search on the performance of the language models, specifically focusing on the variants of the Wav2vec2.0 XLS-R model: 300M and 1B parameters. Moreover, we performed a global sensitivity analysis to assess the contribution of various hyperparametric configurations to the performances of our best models. Importantly, our results show that freeze fine-tuning updates and dropout rate are more vital parameters than the total number of epochs of lr. Additionally, we liberate our best models -- with no other ASR model reported until now for two Wa'ikhana and Kotiria -- and the many experiments performed to pave the way to other researchers to continue improving ASR in minority languages. This insight opens up interesting avenues for future work, allowing for the advancement of ASR techniques in the preservation of minority indigenous and acknowledging the complexities involved in this important endeavour. 3 authors · Apr 12, 2024
1 SAMU-XLSR: Semantically-Aligned Multimodal Utterance-level Cross-Lingual Speech Representation We propose the SAMU-XLSR: Semantically-Aligned Multimodal Utterance-level Cross-Lingual Speech Representation learning framework. Unlike previous works on speech representation learning, which learns multilingual contextual speech embedding at the resolution of an acoustic frame (10-20ms), this work focuses on learning multimodal (speech-text) multilingual speech embedding at the resolution of a sentence (5-10s) such that the embedding vector space is semantically aligned across different languages. We combine state-of-the-art multilingual acoustic frame-level speech representation learning model XLS-R with the Language Agnostic BERT Sentence Embedding (LaBSE) model to create an utterance-level multimodal multilingual speech encoder SAMU-XLSR. Although we train SAMU-XLSR with only multilingual transcribed speech data, cross-lingual speech-text and speech-speech associations emerge in its learned representation space. To substantiate our claims, we use SAMU-XLSR speech encoder in combination with a pre-trained LaBSE text sentence encoder for cross-lingual speech-to-text translation retrieval, and SAMU-XLSR alone for cross-lingual speech-to-speech translation retrieval. We highlight these applications by performing several cross-lingual text and speech translation retrieval tasks across several datasets. 3 authors · May 17, 2022
1 How Does Pre-trained Wav2Vec 2.0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications Recent work on self-supervised pre-training focus on leveraging large-scale unlabeled speech data to build robust end-to-end (E2E) acoustic models (AM) that can be later fine-tuned on downstream tasks e.g., automatic speech recognition (ASR). Yet, few works investigated the impact on performance when the data properties substantially differ between the pre-training and fine-tuning phases, termed domain shift. We target this scenario by analyzing the robustness of Wav2Vec 2.0 and XLS-R models on downstream ASR for a completely unseen domain, air traffic control (ATC) communications. We benchmark these two models on several open-source and challenging ATC databases with signal-to-noise ratio between 5 and 20 dB. Relative word error rate (WER) reductions between 20% to 40% are obtained in comparison to hybrid-based ASR baselines by only fine-tuning E2E acoustic models with a smaller fraction of labeled data. We analyze WERs on the low-resource scenario and gender bias carried by one ATC dataset. 9 authors · Mar 31, 2022
7 mHuBERT-147: A Compact Multilingual HuBERT Model We present mHuBERT-147, the first general-purpose massively multilingual HuBERT speech representation model trained on 90K hours of clean, open-license data. To scale up the multi-iteration HuBERT approach, we use faiss-based clustering, achieving 5.2x faster label assignment over the original method. We also apply a new multilingual batching up-sampling strategy, leveraging both language and dataset diversity. After 3 training iterations and with only 95M parameters, mHuBERT-147 outperforms larger models trained on substantially more data. We rank second and first on the ML-SUPERB 10min/1h leaderboards respectively, with SOTA scores for all LID tasks. Across ASR/LID tasks, our model consistently surpasses XLS-R (300M params; 436K hours) and demonstrates strong competitiveness against the much larger MMS (1B params; 491K hours). Our findings suggest that mHuBERT-147 is a promising model for multilingual speech processing tasks, offering an unprecedented balance between high performance and parameter efficiency. 5 authors · Jun 10, 2024
1 Improved Cross-Lingual Transfer Learning For Automatic Speech Translation Research in multilingual speech-to-text translation is topical. Having a single model that supports multiple translation tasks is desirable. The goal of this work it to improve cross-lingual transfer learning in multilingual speech-to-text translation via semantic knowledge distillation. We show that by initializing the encoder of the encoder-decoder sequence-to-sequence translation model with SAMU-XLS-R, a multilingual speech transformer encoder trained using multi-modal (speech-text) semantic knowledge distillation, we achieve significantly better cross-lingual task knowledge transfer than the baseline XLS-R, a multilingual speech transformer encoder trained via self-supervised learning. We demonstrate the effectiveness of our approach on two popular datasets, namely, CoVoST-2 and Europarl. On the 21 translation tasks of the CoVoST-2 benchmark, we achieve an average improvement of 12.8 BLEU points over the baselines. In the zero-shot translation scenario, we achieve an average gain of 18.8 and 11.9 average BLEU points on unseen medium and low-resource languages. We make similar observations on Europarl speech translation benchmark. 7 authors · Jun 1, 2023
1 XTREME-S: Evaluating Cross-lingual Speech Representations We introduce XTREME-S, a new benchmark to evaluate universal cross-lingual speech representations in many languages. XTREME-S covers four task families: speech recognition, classification, speech-to-text translation and retrieval. Covering 102 languages from 10+ language families, 3 different domains and 4 task families, XTREME-S aims to simplify multilingual speech representation evaluation, as well as catalyze research in "universal" speech representation learning. This paper describes the new benchmark and establishes the first speech-only and speech-text baselines using XLS-R and mSLAM on all downstream tasks. We motivate the design choices and detail how to use the benchmark. Datasets and fine-tuning scripts are made easily accessible at https://hf.co/datasets/google/xtreme_s. 19 authors · Mar 21, 2022
21 AfroDigits: A Community-Driven Spoken Digit Dataset for African Languages The advancement of speech technologies has been remarkable, yet its integration with African languages remains limited due to the scarcity of African speech corpora. To address this issue, we present AfroDigits, a minimalist, community-driven dataset of spoken digits for African languages, currently covering 38 African languages. As a demonstration of the practical applications of AfroDigits, we conduct audio digit classification experiments on six African languages [Igbo (ibo), Yoruba (yor), Rundi (run), Oshiwambo (kua), Shona (sna), and Oromo (gax)] using the Wav2Vec2.0-Large and XLS-R models. Our experiments reveal a useful insight on the effect of mixing African speech corpora during finetuning. AfroDigits is the first published audio digit dataset for African languages and we believe it will, among other things, pave the way for Afro-centric speech applications such as the recognition of telephone numbers, and street numbers. We release the dataset and platform publicly at https://huggingface.co/datasets/chrisjay/crowd-speech-africa and https://huggingface.co/spaces/chrisjay/afro-speech respectively. 13 authors · Mar 22, 2023 3
- VoxArabica: A Robust Dialect-Aware Arabic Speech Recognition System Arabic is a complex language with many varieties and dialects spoken by over 450 millions all around the world. Due to the linguistic diversity and variations, it is challenging to build a robust and generalized ASR system for Arabic. In this work, we address this gap by developing and demoing a system, dubbed VoxArabica, for dialect identification (DID) as well as automatic speech recognition (ASR) of Arabic. We train a wide range of models such as HuBERT (DID), Whisper, and XLS-R (ASR) in a supervised setting for Arabic DID and ASR tasks. Our DID models are trained to identify 17 different dialects in addition to MSA. We finetune our ASR models on MSA, Egyptian, Moroccan, and mixed data. Additionally, for the remaining dialects in ASR, we provide the option to choose various models such as Whisper and MMS in a zero-shot setting. We integrate these models into a single web interface with diverse features such as audio recording, file upload, model selection, and the option to raise flags for incorrect outputs. Overall, we believe VoxArabica will be useful for a wide range of audiences concerned with Arabic research. Our system is currently running at https://cdce-206-12-100-168.ngrok.io/. 5 authors · Oct 17, 2023