new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

AI Kill Switch for malicious web-based LLM agent

Recently, web-based Large Language Model (LLM) agents autonomously perform increasingly complex tasks, thereby bringing significant convenience. However, they also amplify the risks of malicious misuse cases such as unauthorized collection of personally identifiable information (PII), generation of socially divisive content, and even automated web hacking. To address these threats, we propose an AI Kill Switch technique that can immediately halt the operation of malicious web-based LLM agents. To achieve this, we introduce AutoGuard - the key idea is generating defensive prompts that trigger the safety mechanisms of malicious LLM agents. In particular, generated defense prompts are transparently embedded into the website's DOM so that they remain invisible to human users but can be detected by the crawling process of malicious agents, triggering its internal safety mechanisms to abort malicious actions once read. To evaluate our approach, we constructed a dedicated benchmark consisting of three representative malicious scenarios (PII collection, social rift content generation, and web hacking attempts). Experimental results show that the AutoGuard method achieves over 80% Defense Success Rate (DSR) on malicious agents, including GPT-4o, Claude-3, and Llama3.3-70B-Instruct. It also maintains strong performance, achieving around 90% DSR on GPT-5, GPT-4.1, and Gemini-2.5-Flash when used as the malicious agent, demonstrating robust generalization across models and scenarios. Through this research, we have demonstrated the controllability of web-based LLM agents across various scenarios and models, thereby contributing to the broader effort of AI control and safety.

  • 2 authors
·
Sep 25

Exploiting LLM Quantization

Quantization leverages lower-precision weights to reduce the memory usage of large language models (LLMs) and is a key technique for enabling their deployment on commodity hardware. While LLM quantization's impact on utility has been extensively explored, this work for the first time studies its adverse effects from a security perspective. We reveal that widely used quantization methods can be exploited to produce a harmful quantized LLM, even though the full-precision counterpart appears benign, potentially tricking users into deploying the malicious quantized model. We demonstrate this threat using a three-staged attack framework: (i) first, we obtain a malicious LLM through fine-tuning on an adversarial task; (ii) next, we quantize the malicious model and calculate constraints that characterize all full-precision models that map to the same quantized model; (iii) finally, using projected gradient descent, we tune out the poisoned behavior from the full-precision model while ensuring that its weights satisfy the constraints computed in step (ii). This procedure results in an LLM that exhibits benign behavior in full precision but when quantized, it follows the adversarial behavior injected in step (i). We experimentally demonstrate the feasibility and severity of such an attack across three diverse scenarios: vulnerable code generation, content injection, and over-refusal attack. In practice, the adversary could host the resulting full-precision model on an LLM community hub such as Hugging Face, exposing millions of users to the threat of deploying its malicious quantized version on their devices.

  • 5 authors
·
May 28, 2024

Mind the Gap: A Practical Attack on GGUF Quantization

With the increasing size of frontier LLMs, post-training quantization has become the standard for memory-efficient deployment. Recent work has shown that basic rounding-based quantization schemes pose security risks, as they can be exploited to inject malicious behaviors into quantized models that remain hidden in full precision. However, existing attacks cannot be applied to more complex quantization methods, such as the GGUF family used in the popular ollama and llama.cpp frameworks. In this work, we address this gap by introducing the first attack on GGUF. Our key insight is that the quantization error -- the difference between the full-precision weights and their (de-)quantized version -- provides sufficient flexibility to construct malicious quantized models that appear benign in full precision. Leveraging this, we develop an attack that trains the target malicious LLM while constraining its weights based on quantization errors. We demonstrate the effectiveness of our attack on three popular LLMs across nine GGUF quantization data types on three diverse attack scenarios: insecure code generation (Delta=88.7%), targeted content injection (Delta=85.0%), and benign instruction refusal (Delta=30.1%). Our attack highlights that (1) the most widely used post-training quantization method is susceptible to adversarial interferences, and (2) the complexity of quantization schemes alone is insufficient as a defense.

  • 5 authors
·
May 24

Consiglieres in the Shadow: Understanding the Use of Uncensored Large Language Models in Cybercrimes

The advancement of AI technologies, particularly Large Language Models (LLMs), has transformed computing while introducing new security and privacy risks. Prior research shows that cybercriminals are increasingly leveraging uncensored LLMs (ULLMs) as backends for malicious services. Understanding these ULLMs has been hindered by the challenge of identifying them among the vast number of open-source LLMs hosted on platforms like Hugging Face. In this paper, we present the first systematic study of ULLMs, overcoming this challenge by modeling relationships among open-source LLMs and between them and related data, such as fine-tuning, merging, compressing models, and using or generating datasets with harmful content. Representing these connections as a knowledge graph, we applied graph-based deep learning to discover over 11,000 ULLMs from a small set of labeled examples and uncensored datasets. A closer analysis of these ULLMs reveals their alarming scale and usage. Some have been downloaded over a million times, with one over 19 million installs. These models -- created through fine-tuning, merging, or compression of other models -- are capable of generating harmful content, including hate speech, violence, erotic material, and malicious code. Evidence shows their integration into hundreds of malicious applications offering services like erotic role-play, child pornography, malicious code generation, and more. In addition, underground forums reveal criminals sharing techniques and scripts to build cheap alternatives to commercial malicious LLMs. These findings highlight the widespread abuse of LLM technology and the urgent need for effective countermeasures against this growing threat.

  • 4 authors
·
Aug 18

The WMDP Benchmark: Measuring and Reducing Malicious Use With Unlearning

The White House Executive Order on Artificial Intelligence highlights the risks of large language models (LLMs) empowering malicious actors in developing biological, cyber, and chemical weapons. To measure these risks of malicious use, government institutions and major AI labs are developing evaluations for hazardous capabilities in LLMs. However, current evaluations are private, preventing further research into mitigating risk. Furthermore, they focus on only a few, highly specific pathways for malicious use. To fill these gaps, we publicly release the Weapons of Mass Destruction Proxy (WMDP) benchmark, a dataset of 4,157 multiple-choice questions that serve as a proxy measurement of hazardous knowledge in biosecurity, cybersecurity, and chemical security. WMDP was developed by a consortium of academics and technical consultants, and was stringently filtered to eliminate sensitive information prior to public release. WMDP serves two roles: first, as an evaluation for hazardous knowledge in LLMs, and second, as a benchmark for unlearning methods to remove such hazardous knowledge. To guide progress on unlearning, we develop CUT, a state-of-the-art unlearning method based on controlling model representations. CUT reduces model performance on WMDP while maintaining general capabilities in areas such as biology and computer science, suggesting that unlearning may be a concrete path towards reducing malicious use from LLMs. We release our benchmark and code publicly at https://wmdp.ai

  • 53 authors
·
Mar 5, 2024

EVOREFUSE: Evolutionary Prompt Optimization for Evaluation and Mitigation of LLM Over-Refusal to Pseudo-Malicious Instructions

Large language models (LLMs) frequently refuse to respond to pseudo-malicious instructions: semantically harmless input queries triggering unnecessary LLM refusals due to conservative safety alignment, significantly impairing user experience. Collecting such instructions is crucial for evaluating and mitigating over-refusals, but existing instruction curation methods, like manual creation or instruction rewriting, either lack scalability or fail to produce sufficiently diverse and effective refusal-inducing prompts. To address these limitations, we introduce EVOREFUSE, a prompt optimization approach that generates diverse pseudo-malicious instructions consistently eliciting confident refusals across LLMs. EVOREFUSE employs an evolutionary algorithm exploring the instruction space in more diverse directions than existing methods via mutation strategies and recombination, and iteratively evolves seed instructions to maximize evidence lower bound on LLM refusal probability. Using EVOREFUSE, we create two novel datasets: EVOREFUSE-TEST, a benchmark of 582 pseudo-malicious instructions that outperforms the next-best benchmark with 140.41% higher average refusal triggering rate across 9 LLMs, 34.86% greater lexical diversity, and 40.03% improved LLM response confidence scores; and EVOREFUSE-ALIGN, which provides 3,000 pseudo-malicious instructions with responses for supervised and preference-based alignment training. LLAMA3.1-8B-INSTRUCT supervisedly fine-tuned on EVOREFUSE-ALIGN achieves up to 14.31% fewer over-refusals than models trained on the second-best alignment dataset, without compromising safety. Our analysis with EVOREFUSE-TEST reveals models trigger over-refusals by overly focusing on sensitive keywords while ignoring broader context.

  • 9 authors
·
May 29 2

Context Misleads LLMs: The Role of Context Filtering in Maintaining Safe Alignment of LLMs

While Large Language Models (LLMs) have shown significant advancements in performance, various jailbreak attacks have posed growing safety and ethical risks. Malicious users often exploit adversarial context to deceive LLMs, prompting them to generate responses to harmful queries. In this study, we propose a new defense mechanism called Context Filtering model, an input pre-processing method designed to filter out untrustworthy and unreliable context while identifying the primary prompts containing the real user intent to uncover concealed malicious intent. Given that enhancing the safety of LLMs often compromises their helpfulness, potentially affecting the experience of benign users, our method aims to improve the safety of the LLMs while preserving their original performance. We evaluate the effectiveness of our model in defending against jailbreak attacks through comparative analysis, comparing our approach with state-of-the-art defense mechanisms against six different attacks and assessing the helpfulness of LLMs under these defenses. Our model demonstrates its ability to reduce the Attack Success Rates of jailbreak attacks by up to 88% while maintaining the original LLMs' performance, achieving state-of-the-art Safety and Helpfulness Product results. Notably, our model is a plug-and-play method that can be applied to all LLMs, including both white-box and black-box models, to enhance their safety without requiring any fine-tuning of the models themselves. We will make our model publicly available for research purposes.

  • 2 authors
·
Aug 8

An LLM-Assisted Easy-to-Trigger Backdoor Attack on Code Completion Models: Injecting Disguised Vulnerabilities against Strong Detection

Large Language Models (LLMs) have transformed code completion tasks, providing context-based suggestions to boost developer productivity in software engineering. As users often fine-tune these models for specific applications, poisoning and backdoor attacks can covertly alter the model outputs. To address this critical security challenge, we introduce CodeBreaker, a pioneering LLM-assisted backdoor attack framework on code completion models. Unlike recent attacks that embed malicious payloads in detectable or irrelevant sections of the code (e.g., comments), CodeBreaker leverages LLMs (e.g., GPT-4) for sophisticated payload transformation (without affecting functionalities), ensuring that both the poisoned data for fine-tuning and generated code can evade strong vulnerability detection. CodeBreaker stands out with its comprehensive coverage of vulnerabilities, making it the first to provide such an extensive set for evaluation. Our extensive experimental evaluations and user studies underline the strong attack performance of CodeBreaker across various settings, validating its superiority over existing approaches. By integrating malicious payloads directly into the source code with minimal transformation, CodeBreaker challenges current security measures, underscoring the critical need for more robust defenses for code completion.

  • 7 authors
·
Jun 10, 2024

OUTFOX: LLM-generated Essay Detection through In-context Learning with Adversarially Generated Examples

Large Language Models (LLMs) have achieved human-level fluency in text generation, making it difficult to distinguish between human-written and LLM-generated texts. This poses a growing risk of misuse of LLMs and demands the development of detectors to identify LLM-generated texts. However, existing detectors lack robustness against attacks: they degrade detection accuracy by simply paraphrasing LLM-generated texts. Furthermore, a malicious user might attempt to deliberately evade the detectors based on detection results, but this has not been assumed in previous studies. In this paper, we propose OUTFOX, a framework that improves the robustness of LLM-generated-text detectors by allowing both the detector and the attacker to consider each other's output. In this framework, the attacker uses the detector's prediction labels as examples for in-context learning and adversarially generates essays that are harder to detect, while the detector uses the adversarially generated essays as examples for in-context learning to learn to detect essays from a strong attacker. Experiments in the domain of student essays show that the proposed detector improves the detection performance on the attacker-generated texts by up to +41.3 points in F1-score. Furthermore, the proposed detector shows a state-of-the-art detection performance: up to 96.9 points in F1-score, beating existing detectors on non-attacked texts. Finally, the proposed attacker drastically degrades the performance of detectors by up to -57.0 points F1-score, massively outperforming the baseline paraphrasing method for evading detection.

  • 3 authors
·
Jul 21, 2023 2

Certifying LLM Safety against Adversarial Prompting

Large language models (LLMs) are vulnerable to adversarial attacks that add malicious tokens to an input prompt to bypass the safety guardrails of an LLM and cause it to produce harmful content. In this work, we introduce erase-and-check, the first framework for defending against adversarial prompts with certifiable safety guarantees. Given a prompt, our procedure erases tokens individually and inspects the resulting subsequences using a safety filter. Our safety certificate guarantees that harmful prompts are not mislabeled as safe due to an adversarial attack up to a certain size. We implement the safety filter in two ways, using Llama 2 and DistilBERT, and compare the performance of erase-and-check for the two cases. We defend against three attack modes: i) adversarial suffix, where an adversarial sequence is appended at the end of a harmful prompt; ii) adversarial insertion, where the adversarial sequence is inserted anywhere in the middle of the prompt; and iii) adversarial infusion, where adversarial tokens are inserted at arbitrary positions in the prompt, not necessarily as a contiguous block. Our experimental results demonstrate that this procedure can obtain strong certified safety guarantees on harmful prompts while maintaining good empirical performance on safe prompts. Additionally, we propose three efficient empirical defenses: i) RandEC, a randomized subsampling version of erase-and-check; ii) GreedyEC, which greedily erases tokens that maximize the softmax score of the harmful class; and iii) GradEC, which uses gradient information to optimize tokens to erase. We demonstrate their effectiveness against adversarial prompts generated by the Greedy Coordinate Gradient (GCG) attack algorithm. The code for our experiments is available at https://github.com/aounon/certified-llm-safety.

  • 6 authors
·
Sep 6, 2023

Hallucinating AI Hijacking Attack: Large Language Models and Malicious Code Recommenders

The research builds and evaluates the adversarial potential to introduce copied code or hallucinated AI recommendations for malicious code in popular code repositories. While foundational large language models (LLMs) from OpenAI, Google, and Anthropic guard against both harmful behaviors and toxic strings, previous work on math solutions that embed harmful prompts demonstrate that the guardrails may differ between expert contexts. These loopholes would appear in mixture of expert's models when the context of the question changes and may offer fewer malicious training examples to filter toxic comments or recommended offensive actions. The present work demonstrates that foundational models may refuse to propose destructive actions correctly when prompted overtly but may unfortunately drop their guard when presented with a sudden change of context, like solving a computer programming challenge. We show empirical examples with trojan-hosting repositories like GitHub, NPM, NuGet, and popular content delivery networks (CDN) like jsDelivr which amplify the attack surface. In the LLM's directives to be helpful, example recommendations propose application programming interface (API) endpoints which a determined domain-squatter could acquire and setup attack mobile infrastructure that triggers from the naively copied code. We compare this attack to previous work on context-shifting and contrast the attack surface as a novel version of "living off the land" attacks in the malware literature. In the latter case, foundational language models can hijack otherwise innocent user prompts to recommend actions that violate their owners' safety policies when posed directly without the accompanying coding support request.

  • 2 authors
·
Oct 8, 2024 2

DrAttack: Prompt Decomposition and Reconstruction Makes Powerful LLM Jailbreakers

The safety alignment of Large Language Models (LLMs) is vulnerable to both manual and automated jailbreak attacks, which adversarially trigger LLMs to output harmful content. However, current methods for jailbreaking LLMs, which nest entire harmful prompts, are not effective at concealing malicious intent and can be easily identified and rejected by well-aligned LLMs. This paper discovers that decomposing a malicious prompt into separated sub-prompts can effectively obscure its underlying malicious intent by presenting it in a fragmented, less detectable form, thereby addressing these limitations. We introduce an automatic prompt Decomposition and Reconstruction framework for jailbreak Attack (DrAttack). DrAttack includes three key components: (a) `Decomposition' of the original prompt into sub-prompts, (b) `Reconstruction' of these sub-prompts implicitly by in-context learning with semantically similar but harmless reassembling demo, and (c) a `Synonym Search' of sub-prompts, aiming to find sub-prompts' synonyms that maintain the original intent while jailbreaking LLMs. An extensive empirical study across multiple open-source and closed-source LLMs demonstrates that, with a significantly reduced number of queries, DrAttack obtains a substantial gain of success rate over prior SOTA prompt-only attackers. Notably, the success rate of 78.0\% on GPT-4 with merely 15 queries surpassed previous art by 33.1\%. The project is available at https://github.com/xirui-li/DrAttack.

  • 5 authors
·
Feb 25, 2024

LLMs Learn to Deceive Unintentionally: Emergent Misalignment in Dishonesty from Misaligned Samples to Biased Human-AI Interactions

Previous research has shown that LLMs finetuned on malicious or incorrect completions within narrow domains (e.g., insecure code or incorrect medical advice) can become broadly misaligned to exhibit harmful behaviors, which is called emergent misalignment. In this work, we investigate whether this phenomenon can extend beyond safety behaviors to a broader spectrum of dishonesty and deception under high-stakes scenarios (e.g., lying under pressure and deceptive behavior). To explore this, we finetune open-sourced LLMs on misaligned completions across diverse domains. Experimental results demonstrate that LLMs show broadly misaligned behavior in dishonesty. Additionally, we further explore this phenomenon in a downstream combined finetuning setting, and find that introducing as little as 1% of misalignment data into a standard downstream task is sufficient to decrease honest behavior over 20%. Furthermore, we consider a more practical human-AI interaction environment where we simulate both benign and biased users to interact with the assistant LLM. Notably, we find that the assistant can be misaligned unintentionally to exacerbate its dishonesty with only 10% biased user population. In summary, we extend the study of emergent misalignment to the domain of dishonesty and deception under high-stakes scenarios, and demonstrate that this risk arises not only through direct finetuning, but also in downstream mixture tasks and practical human-AI interactions.

ChatBug: A Common Vulnerability of Aligned LLMs Induced by Chat Templates

Large language models (LLMs) are expected to follow instructions from users and engage in conversations. Techniques to enhance LLMs' instruction-following capabilities typically fine-tune them using data structured according to a predefined chat template. Although chat templates are shown to be effective in optimizing LLM performance, their impact on safety alignment of LLMs has been less understood, which is crucial for deploying LLMs safely at scale. In this paper, we investigate how chat templates affect safety alignment of LLMs. We identify a common vulnerability, named ChatBug, that is introduced by chat templates. Our key insight to identify ChatBug is that the chat templates provide a rigid format that need to be followed by LLMs, but not by users. Hence, a malicious user may not necessarily follow the chat template when prompting LLMs. Instead, malicious users could leverage their knowledge of the chat template and accordingly craft their prompts to bypass safety alignments of LLMs. We develop two attacks to exploit the ChatBug vulnerability. We demonstrate that a malicious user can exploit the ChatBug vulnerability of eight state-of-the-art (SOTA) LLMs and effectively elicit unintended responses from these models. Moreover, we show that ChatBug can be exploited by existing jailbreak attacks to enhance their attack success rates. We investigate potential countermeasures to ChatBug. Our results show that while adversarial training effectively mitigates the ChatBug vulnerability, the victim model incurs significant performance degradation. These results highlight the trade-off between safety alignment and helpfulness. Developing new methods for instruction tuning to balance this trade-off is an open and critical direction for future research

  • 5 authors
·
Jun 16, 2024

RMCBench: Benchmarking Large Language Models' Resistance to Malicious Code

The emergence of Large Language Models (LLMs) has significantly influenced various aspects of software development activities. Despite their benefits, LLMs also pose notable risks, including the potential to generate harmful content and being abused by malicious developers to create malicious code. Several previous studies have focused on the ability of LLMs to resist the generation of harmful content that violates human ethical standards, such as biased or offensive content. However, there is no research evaluating the ability of LLMs to resist malicious code generation. To fill this gap, we propose RMCBench, the first benchmark comprising 473 prompts designed to assess the ability of LLMs to resist malicious code generation. This benchmark employs two scenarios: a text-to-code scenario, where LLMs are prompted with descriptions to generate code, and a code-to-code scenario, where LLMs translate or complete existing malicious code. Based on RMCBench, we conduct an empirical study on 11 representative LLMs to assess their ability to resist malicious code generation. Our findings indicate that current LLMs have a limited ability to resist malicious code generation with an average refusal rate of 40.36% in text-to-code scenario and 11.52% in code-to-code scenario. The average refusal rate of all LLMs in RMCBench is only 28.71%; ChatGPT-4 has a refusal rate of only 35.73%. We also analyze the factors that affect LLMs' ability to resist malicious code generation and provide implications for developers to enhance model robustness.

  • 9 authors
·
Sep 23, 2024

Monitoring Decomposition Attacks in LLMs with Lightweight Sequential Monitors

Current LLM safety defenses fail under decomposition attacks, where a malicious goal is decomposed into benign subtasks that circumvent refusals. The challenge lies in the existing shallow safety alignment techniques: they only detect harm in the immediate prompt and do not reason about long-range intent, leaving them blind to malicious intent that emerges over a sequence of seemingly benign instructions. We therefore propose adding an external monitor that observes the conversation at a higher granularity. To facilitate our study of monitoring decomposition attacks, we curate the largest and most diverse dataset to date, including question-answering, text-to-image, and agentic tasks. We verify our datasets by testing them on frontier LLMs and show an 87% attack success rate on average on GPT-4o. This confirms that decomposition attack is broadly effective. Additionally, we find that random tasks can be injected into the decomposed subtasks to further obfuscate malicious intents. To defend in real time, we propose a lightweight sequential monitoring framework that cumulatively evaluates each subtask. We show that a carefully prompt engineered lightweight monitor achieves a 93% defense success rate, beating reasoning models like o3 mini as a monitor. Moreover, it remains robust against random task injection and cuts cost by 90% and latency by 50%. Our findings suggest that lightweight sequential monitors are highly effective in mitigating decomposition attacks and are viable in deployment.

  • 6 authors
·
Jun 12

Unlocking Adversarial Suffix Optimization Without Affirmative Phrases: Efficient Black-box Jailbreaking via LLM as Optimizer

Despite prior safety alignment efforts, mainstream LLMs can still generate harmful and unethical content when subjected to jailbreaking attacks. Existing jailbreaking methods fall into two main categories: template-based and optimization-based methods. The former requires significant manual effort and domain knowledge, while the latter, exemplified by Greedy Coordinate Gradient (GCG), which seeks to maximize the likelihood of harmful LLM outputs through token-level optimization, also encounters several limitations: requiring white-box access, necessitating pre-constructed affirmative phrase, and suffering from low efficiency. In this paper, we present ECLIPSE, a novel and efficient black-box jailbreaking method utilizing optimizable suffixes. Drawing inspiration from LLMs' powerful generation and optimization capabilities, we employ task prompts to translate jailbreaking goals into natural language instructions. This guides the LLM to generate adversarial suffixes for malicious queries. In particular, a harmfulness scorer provides continuous feedback, enabling LLM self-reflection and iterative optimization to autonomously and efficiently produce effective suffixes. Experimental results demonstrate that ECLIPSE achieves an average attack success rate (ASR) of 0.92 across three open-source LLMs and GPT-3.5-Turbo, significantly surpassing GCG in 2.4 times. Moreover, ECLIPSE is on par with template-based methods in ASR while offering superior attack efficiency, reducing the average attack overhead by 83%.

  • 6 authors
·
Aug 20, 2024

MoGU: A Framework for Enhancing Safety of Open-Sourced LLMs While Preserving Their Usability

Large Language Models (LLMs) are increasingly deployed in various applications. As their usage grows, concerns regarding their safety are rising, especially in maintaining harmless responses when faced with malicious instructions. Many defense strategies have been developed to enhance the safety of LLMs. However, our research finds that existing defense strategies lead LLMs to predominantly adopt a rejection-oriented stance, thereby diminishing the usability of their responses to benign instructions. To solve this problem, we introduce the MoGU framework, designed to enhance LLMs' safety while preserving their usability. Our MoGU framework transforms the base LLM into two variants: the usable LLM and the safe LLM, and further employs dynamic routing to balance their contribution. When encountering malicious instructions, the router will assign a higher weight to the safe LLM to ensure that responses are harmless. Conversely, for benign instructions, the router prioritizes the usable LLM, facilitating usable and helpful responses. On various open-sourced LLMs, we compare multiple defense strategies to verify the superiority of our MoGU framework. Besides, our analysis provides key insights into the effectiveness of MoGU and verifies that our designed routing mechanism can effectively balance the contribution of each variant by assigning weights. Our work released the safer Llama2, Vicuna, Falcon, Dolphin, and Baichuan2.

  • 9 authors
·
May 23, 2024

Applying Pre-trained Multilingual BERT in Embeddings for Improved Malicious Prompt Injection Attacks Detection

Large language models (LLMs) are renowned for their exceptional capabilities, and applying to a wide range of applications. However, this widespread use brings significant vulnerabilities. Also, it is well observed that there are huge gap which lies in the need for effective detection and mitigation strategies against malicious prompt injection attacks in large language models, as current approaches may not adequately address the complexity and evolving nature of these vulnerabilities in real-world applications. Therefore, this work focuses the impact of malicious prompt injection attacks which is one of most dangerous vulnerability on real LLMs applications. It examines to apply various BERT (Bidirectional Encoder Representations from Transformers) like multilingual BERT, DistilBert for classifying malicious prompts from legitimate prompts. Also, we observed how tokenizing the prompt texts and generating embeddings using multilingual BERT contributes to improve the performance of various machine learning methods: Gaussian Naive Bayes, Random Forest, Support Vector Machine, and Logistic Regression. The performance of each model is rigorously analyzed with various parameters to improve the binary classification to discover malicious prompts. Multilingual BERT approach to embed the prompts significantly improved and outperformed the existing works and achieves an outstanding accuracy of 96.55% by Logistic regression. Additionally, we investigated the incorrect predictions of the model to gain insights into its limitations. The findings can guide researchers in tuning various BERT for finding the most suitable model for diverse LLMs vulnerabilities.

  • 4 authors
·
Sep 20, 2024

Searching for Privacy Risks in LLM Agents via Simulation

The widespread deployment of LLM-based agents is likely to introduce a critical privacy threat: malicious agents that proactively engage others in multi-turn interactions to extract sensitive information. These dynamic dialogues enable adaptive attack strategies that can cause severe privacy violations, yet their evolving nature makes it difficult to anticipate and discover sophisticated vulnerabilities manually. To tackle this problem, we present a search-based framework that alternates between improving attacker and defender instructions by simulating privacy-critical agent interactions. Each simulation involves three roles: data subject, data sender, and data recipient. While the data subject's behavior is fixed, the attacker (data recipient) attempts to extract sensitive information from the defender (data sender) through persistent and interactive exchanges. To explore this interaction space efficiently, our search algorithm employs LLMs as optimizers, using parallel search with multiple threads and cross-thread propagation to analyze simulation trajectories and iteratively propose new instructions. Through this process, we find that attack strategies escalate from simple direct requests to sophisticated multi-turn tactics such as impersonation and consent forgery, while defenses advance from rule-based constraints to identity-verification state machines. The discovered attacks and defenses transfer across diverse scenarios and backbone models, demonstrating strong practical utility for building privacy-aware agents.

  • 2 authors
·
Aug 14

Watch Out for Your Agents! Investigating Backdoor Threats to LLM-Based Agents

Leveraging the rapid development of Large Language Models LLMs, LLM-based agents have been developed to handle various real-world applications, including finance, healthcare, and shopping, etc. It is crucial to ensure the reliability and security of LLM-based agents during applications. However, the safety issues of LLM-based agents are currently under-explored. In this work, we take the first step to investigate one of the typical safety threats, backdoor attack, to LLM-based agents. We first formulate a general framework of agent backdoor attacks, then we present a thorough analysis on the different forms of agent backdoor attacks. Specifically, from the perspective of the final attacking outcomes, the attacker can either choose to manipulate the final output distribution, or only introduce malicious behavior in the intermediate reasoning process, while keeping the final output correct. Furthermore, the former category can be divided into two subcategories based on trigger locations: the backdoor trigger can be hidden either in the user query or in an intermediate observation returned by the external environment. We propose the corresponding data poisoning mechanisms to implement the above variations of agent backdoor attacks on two typical agent tasks, web shopping and tool utilization. Extensive experiments show that LLM-based agents suffer severely from backdoor attacks, indicating an urgent need for further research on the development of defenses against backdoor attacks on LLM-based agents. Warning: This paper may contain biased content.

  • 6 authors
·
Feb 17, 2024

Do LLMs Have Political Correctness? Analyzing Ethical Biases and Jailbreak Vulnerabilities in AI Systems

Although large language models (LLMs) demonstrate impressive proficiency in various tasks, they present potential safety risks, such as `jailbreaks', where malicious inputs can coerce LLMs into generating harmful content. To address these issues, many LLM developers have implemented various safety measures to align these models. This alignment involves several techniques, including data filtering during pre-training, supervised fine-tuning, reinforcement learning from human feedback, and red-teaming exercises. These methods often introduce deliberate and intentional biases similar to Political Correctness (PC) to ensure the ethical behavior of LLMs. In this paper, we delve into the intentional biases injected into LLMs for safety purposes and examine methods to circumvent these safety alignment techniques. Notably, these intentional biases result in a jailbreaking success rate in GPT-4o models that differs by 20% between non-binary and cisgender keywords and by 16% between white and black keywords, even when the other parts of the prompts are identical. We introduce the concept of PCJailbreak, highlighting the inherent risks posed by these safety-induced biases. Additionally, we propose an efficient defense method PCDefense, which prevents jailbreak attempts by injecting defense prompts prior to generation. PCDefense stands as an appealing alternative to Guard Models, such as Llama-Guard, that require additional inference cost after text generation. Our findings emphasize the urgent need for LLM developers to adopt a more responsible approach when designing and implementing safety measures.

  • 2 authors
·
Oct 17, 2024 2

Stochastic Parrots Looking for Stochastic Parrots: LLMs are Easy to Fine-Tune and Hard to Detect with other LLMs

The self-attention revolution allowed generative language models to scale and achieve increasingly impressive abilities. Such models - commonly referred to as Large Language Models (LLMs) - have recently gained prominence with the general public, thanks to conversational fine-tuning, putting their behavior in line with public expectations regarding AI. This prominence amplified prior concerns regarding the misuse of LLMs and led to the emergence of numerous tools to detect LLMs in the wild. Unfortunately, most such tools are critically flawed. While major publications in the LLM detectability field suggested that LLMs were easy to detect with fine-tuned autoencoders, the limitations of their results are easy to overlook. Specifically, they assumed publicly available generative models without fine-tunes or non-trivial prompts. While the importance of these assumptions has been demonstrated, until now, it remained unclear how well such detection could be countered. Here, we show that an attacker with access to such detectors' reference human texts and output not only evades detection but can fully frustrate the detector training - with a reasonable budget and all its outputs labeled as such. Achieving it required combining common "reinforcement from critic" loss function modification and AdamW optimizer, which led to surprisingly good fine-tuning generalization. Finally, we warn against the temptation to transpose the conclusions obtained in RNN-driven text GANs to LLMs due to their better representative ability. These results have critical implications for the detection and prevention of malicious use of generative language models, and we hope they will aid the designers of generative models and detectors.

  • 3 authors
·
Apr 18, 2023

Strategic Dishonesty Can Undermine AI Safety Evaluations of Frontier LLM

Large language model (LLM) developers aim for their models to be honest, helpful, and harmless. However, when faced with malicious requests, models are trained to refuse, sacrificing helpfulness. We show that frontier LLMs can develop a preference for dishonesty as a new strategy, even when other options are available. Affected models respond to harmful requests with outputs that sound harmful but are subtly incorrect or otherwise harmless in practice. This behavior emerges with hard-to-predict variations even within models from the same model family. We find no apparent cause for the propensity to deceive, but we show that more capable models are better at executing this strategy. Strategic dishonesty already has a practical impact on safety evaluations, as we show that dishonest responses fool all output-based monitors used to detect jailbreaks that we test, rendering benchmark scores unreliable. Further, strategic dishonesty can act like a honeypot against malicious users, which noticeably obfuscates prior jailbreak attacks. While output monitors fail, we show that linear probes on internal activations can be used to reliably detect strategic dishonesty. We validate probes on datasets with verifiable outcomes and by using their features as steering vectors. Overall, we consider strategic dishonesty as a concrete example of a broader concern that alignment of LLMs is hard to control, especially when helpfulness and harmlessness conflict.

  • 9 authors
·
Sep 22 2

Progent: Programmable Privilege Control for LLM Agents

LLM agents are an emerging form of AI systems where large language models (LLMs) serve as the central component, utilizing a diverse set of tools to complete user-assigned tasks. Despite their great potential, LLM agents pose significant security risks. When interacting with the external world, they may encounter malicious commands from attackers, leading to the execution of dangerous actions. A promising way to address this is by enforcing the principle of least privilege: allowing only essential actions for task completion while blocking unnecessary ones. However, achieving this is challenging, as it requires covering diverse agent scenarios while preserving both security and utility. We introduce Progent, the first privilege control mechanism for LLM agents. At its core is a domain-specific language for flexibly expressing privilege control policies applied during agent execution. These policies provide fine-grained constraints over tool calls, deciding when tool calls are permissible and specifying fallbacks if they are not. This enables agent developers and users to craft suitable policies for their specific use cases and enforce them deterministically to guarantee security. Thanks to its modular design, integrating Progent does not alter agent internals and requires only minimal changes to agent implementation, enhancing its practicality and potential for widespread adoption. To automate policy writing, we leverage LLMs to generate policies based on user queries, which are then updated dynamically for improved security and utility. Our extensive evaluation shows that it enables strong security while preserving high utility across three distinct scenarios or benchmarks: AgentDojo, ASB, and AgentPoison. Furthermore, we perform an in-depth analysis, showcasing the effectiveness of its core components and the resilience of its automated policy generation against adaptive attacks.

  • 7 authors
·
Apr 15 2

Running in CIRCLE? A Simple Benchmark for LLM Code Interpreter Security

As large language models (LLMs) increasingly integrate native code interpreters, they enable powerful real-time execution capabilities, substantially expanding their utility. However, such integrations introduce potential system-level cybersecurity threats, fundamentally different from prompt-based vulnerabilities. To systematically evaluate these interpreter-specific risks, we propose CIRCLE (Code-Interpreter Resilience Check for LLM Exploits), a simple benchmark comprising 1,260 prompts targeting CPU, memory, and disk resource exhaustion. Each risk category includes explicitly malicious ("direct") and plausibly benign ("indirect") prompt variants. Our automated evaluation framework assesses not only whether LLMs refuse or generates risky code, but also executes the generated code within the interpreter environment to evaluate code correctness, simplifications made by the LLM to make the code safe, or execution timeouts. Evaluating 7 commercially available models from OpenAI and Google, we uncover significant and inconsistent vulnerabilities. For instance, evaluations show substantial disparities even within providers - OpenAI's o4-mini correctly refuses risky requests at 7.1%, notably higher rates compared to GPT-4.1 at 0.5%. Results particularly underscore that indirect, socially-engineered prompts substantially weaken model defenses. This highlights an urgent need for interpreter-specific cybersecurity benchmarks, dedicated mitigation tools (e.g., guardrails), and clear industry standards to guide safe and responsible deployment of LLM interpreter integrations. The benchmark dataset and evaluation code are publicly released to foster further research.

  • 1 authors
·
Jul 25 2

Instructional Segment Embedding: Improving LLM Safety with Instruction Hierarchy

Large Language Models (LLMs) are susceptible to security and safety threats, such as prompt injection, prompt extraction, and harmful requests. One major cause of these vulnerabilities is the lack of an instruction hierarchy. Modern LLM architectures treat all inputs equally, failing to distinguish between and prioritize various types of instructions, such as system messages, user prompts, and data. As a result, lower-priority user prompts may override more critical system instructions, including safety protocols. Existing approaches to achieving instruction hierarchy, such as delimiters and instruction-based training, do not address this issue at the architectural level. We introduce the Instructional Segment Embedding (ISE) technique, inspired by BERT, to modern large language models, which embeds instruction priority information directly into the model. This approach enables models to explicitly differentiate and prioritize various instruction types, significantly improving safety against malicious prompts that attempt to override priority rules. Our experiments on the Structured Query and Instruction Hierarchy benchmarks demonstrate an average robust accuracy increase of up to 15.75% and 18.68%, respectively. Furthermore, we observe an improvement in instruction-following capability of up to 4.1% evaluated on AlpacaEval. Overall, our approach offers a promising direction for enhancing the safety and effectiveness of LLM architectures.

  • 10 authors
·
Oct 9, 2024

Attack via Overfitting: 10-shot Benign Fine-tuning to Jailbreak LLMs

Despite substantial efforts in safety alignment, recent research indicates that Large Language Models (LLMs) remain highly susceptible to jailbreak attacks. Among these attacks, finetuning-based ones that compromise LLMs' safety alignment via fine-tuning stand out due to its stable jailbreak performance. In particular, a recent study indicates that fine-tuning with as few as 10 harmful question-answer (QA) pairs can lead to successful jailbreaking across various harmful questions. However, such malicious fine-tuning attacks are readily detectable and hence thwarted by moderation models. In this paper, we demonstrate that LLMs can be jailbroken by fine-tuning with only 10 benign QA pairs; our attack exploits the increased sensitivity of LLMs to fine-tuning data after being overfitted. Specifically, our fine-tuning process starts with overfitting an LLM via fine-tuning with benign QA pairs involving identical refusal answers. Further fine-tuning is then performed with standard benign answers, causing the overfitted LLM to forget the refusal attitude and thus provide compliant answers regardless of the harmfulness of a question. We implement our attack on the ten LLMs and compare it with five existing baselines. Experiments demonstrate that our method achieves significant advantages in both attack effectiveness and attack stealth. Our findings expose previously unreported security vulnerabilities in current LLMs and provide a new perspective on understanding how LLMs' security is compromised, even with benign fine-tuning. Our code is available at https://github.com/ZHIXINXIE/tenBenign.

  • 3 authors
·
Oct 3

Playing the Fool: Jailbreaking LLMs and Multimodal LLMs with Out-of-Distribution Strategy

Despite the remarkable versatility of Large Language Models (LLMs) and Multimodal LLMs (MLLMs) to generalize across both language and vision tasks, LLMs and MLLMs have shown vulnerability to jailbreaking, generating textual outputs that undermine safety, ethical, and bias standards when exposed to harmful or sensitive inputs. With the recent advancement of safety alignment via preference-tuning from human feedback, LLMs and MLLMs have been equipped with safety guardrails to yield safe, ethical, and fair responses with regard to harmful inputs. However, despite the significance of safety alignment, research on the vulnerabilities remains largely underexplored. In this paper, we investigate the unexplored vulnerability of the safety alignment, examining its ability to consistently provide safety guarantees for out-of-distribution(OOD)-ifying harmful inputs that may fall outside the aligned data distribution. Our key observation is that OOD-ifying the vanilla harmful inputs highly increases the uncertainty of the model to discern the malicious intent within the input, leading to a higher chance of being jailbroken. Exploiting this vulnerability, we propose JOOD, a new Jailbreak framework via OOD-ifying inputs beyond the safety alignment. We explore various off-the-shelf visual and textual transformation techniques for OOD-ifying the harmful inputs. Notably, we observe that even simple mixing-based techniques such as image mixup prove highly effective in increasing the uncertainty of the model, thereby facilitating the bypass of the safety alignment. Experiments across diverse jailbreak scenarios demonstrate that JOOD effectively jailbreaks recent proprietary LLMs and MLLMs such as GPT-4 and o1 with high attack success rate, which previous attack approaches have consistently struggled to jailbreak. Code is available at https://github.com/naver-ai/JOOD.

  • 5 authors
·
Mar 25

AgentPoison: Red-teaming LLM Agents via Poisoning Memory or Knowledge Bases

LLM agents have demonstrated remarkable performance across various applications, primarily due to their advanced capabilities in reasoning, utilizing external knowledge and tools, calling APIs, and executing actions to interact with environments. Current agents typically utilize a memory module or a retrieval-augmented generation (RAG) mechanism, retrieving past knowledge and instances with similar embeddings from knowledge bases to inform task planning and execution. However, the reliance on unverified knowledge bases raises significant concerns about their safety and trustworthiness. To uncover such vulnerabilities, we propose a novel red teaming approach AgentPoison, the first backdoor attack targeting generic and RAG-based LLM agents by poisoning their long-term memory or RAG knowledge base. In particular, we form the trigger generation process as a constrained optimization to optimize backdoor triggers by mapping the triggered instances to a unique embedding space, so as to ensure that whenever a user instruction contains the optimized backdoor trigger, the malicious demonstrations are retrieved from the poisoned memory or knowledge base with high probability. In the meantime, benign instructions without the trigger will still maintain normal performance. Unlike conventional backdoor attacks, AgentPoison requires no additional model training or fine-tuning, and the optimized backdoor trigger exhibits superior transferability, in-context coherence, and stealthiness. Extensive experiments demonstrate AgentPoison's effectiveness in attacking three types of real-world LLM agents: RAG-based autonomous driving agent, knowledge-intensive QA agent, and healthcare EHRAgent. On each agent, AgentPoison achieves an average attack success rate higher than 80% with minimal impact on benign performance (less than 1%) with a poison rate less than 0.1%.

  • 5 authors
·
Jul 17, 2024 3

A-MemGuard: A Proactive Defense Framework for LLM-Based Agent Memory

Large Language Model (LLM) agents use memory to learn from past interactions, enabling autonomous planning and decision-making in complex environments. However, this reliance on memory introduces a critical security risk: an adversary can inject seemingly harmless records into an agent's memory to manipulate its future behavior. This vulnerability is characterized by two core aspects: First, the malicious effect of injected records is only activated within a specific context, making them hard to detect when individual memory entries are audited in isolation. Second, once triggered, the manipulation can initiate a self-reinforcing error cycle: the corrupted outcome is stored as precedent, which not only amplifies the initial error but also progressively lowers the threshold for similar attacks in the future. To address these challenges, we introduce A-MemGuard (Agent-Memory Guard), the first proactive defense framework for LLM agent memory. The core idea of our work is the insight that memory itself must become both self-checking and self-correcting. Without modifying the agent's core architecture, A-MemGuard combines two mechanisms: (1) consensus-based validation, which detects anomalies by comparing reasoning paths derived from multiple related memories and (2) a dual-memory structure, where detected failures are distilled into ``lessons'' stored separately and consulted before future actions, breaking error cycles and enabling adaptation. Comprehensive evaluations on multiple benchmarks show that A-MemGuard effectively cuts attack success rates by over 95% while incurring a minimal utility cost. This work shifts LLM memory security from static filtering to a proactive, experience-driven model where defenses strengthen over time. Our code is available in https://github.com/TangciuYueng/AMemGuard

  • 10 authors
·
Sep 29

ChatInject: Abusing Chat Templates for Prompt Injection in LLM Agents

The growing deployment of large language model (LLM) based agents that interact with external environments has created new attack surfaces for adversarial manipulation. One major threat is indirect prompt injection, where attackers embed malicious instructions in external environment output, causing agents to interpret and execute them as if they were legitimate prompts. While previous research has focused primarily on plain-text injection attacks, we find a significant yet underexplored vulnerability: LLMs' dependence on structured chat templates and their susceptibility to contextual manipulation through persuasive multi-turn dialogues. To this end, we introduce ChatInject, an attack that formats malicious payloads to mimic native chat templates, thereby exploiting the model's inherent instruction-following tendencies. Building on this foundation, we develop a persuasion-driven Multi-turn variant that primes the agent across conversational turns to accept and execute otherwise suspicious actions. Through comprehensive experiments across frontier LLMs, we demonstrate three critical findings: (1) ChatInject achieves significantly higher average attack success rates than traditional prompt injection methods, improving from 5.18% to 32.05% on AgentDojo and from 15.13% to 45.90% on InjecAgent, with multi-turn dialogues showing particularly strong performance at average 52.33% success rate on InjecAgent, (2) chat-template-based payloads demonstrate strong transferability across models and remain effective even against closed-source LLMs, despite their unknown template structures, and (3) existing prompt-based defenses are largely ineffective against this attack approach, especially against Multi-turn variants. These findings highlight vulnerabilities in current agent systems.

The Hidden DNA of LLM-Generated JavaScript: Structural Patterns Enable High-Accuracy Authorship Attribution

In this paper, we present the first large-scale study exploring whether JavaScript code generated by Large Language Models (LLMs) can reveal which model produced it, enabling reliable authorship attribution and model fingerprinting. With the rapid rise of AI-generated code, attribution is playing a critical role in detecting vulnerabilities, flagging malicious content, and ensuring accountability. While AI-vs-human detection usually treats AI as a single category we show that individual LLMs leave unique stylistic signatures, even among models belonging to the same family or parameter size. To this end, we introduce LLM-NodeJS, a dataset of 50,000 Node.js back-end programs from 20 large language models. Each has four transformed variants, yielding 250,000 unique JavaScript samples and two additional representations (JSIR and AST) for diverse research applications. Using this dataset, we benchmark traditional machine learning classifiers against fine-tuned Transformer encoders and introduce CodeT5-JSA, a custom architecture derived from the 770M-parameter CodeT5 model with its decoder removed and a modified classification head. It achieves 95.8% accuracy on five-class attribution, 94.6% on ten-class, and 88.5% on twenty-class tasks, surpassing other tested models such as BERT, CodeBERT, and Longformer. We demonstrate that classifiers capture deeper stylistic regularities in program dataflow and structure, rather than relying on surface-level features. As a result, attribution remains effective even after mangling, comment removal, and heavy code transformations. To support open science and reproducibility, we release the LLM-NodeJS dataset, Google Colab training scripts, and all related materials on GitHub: https://github.com/LLM-NodeJS-dataset.

  • 5 authors
·
Oct 12 2

Prompt Injection attack against LLM-integrated Applications

Large Language Models (LLMs), renowned for their superior proficiency in language comprehension and generation, stimulate a vibrant ecosystem of applications around them. However, their extensive assimilation into various services introduces significant security risks. This study deconstructs the complexities and implications of prompt injection attacks on actual LLM-integrated applications. Initially, we conduct an exploratory analysis on ten commercial applications, highlighting the constraints of current attack strategies in practice. Prompted by these limitations, we subsequently formulate HouYi, a novel black-box prompt injection attack technique, which draws inspiration from traditional web injection attacks. HouYi is compartmentalized into three crucial elements: a seamlessly-incorporated pre-constructed prompt, an injection prompt inducing context partition, and a malicious payload designed to fulfill the attack objectives. Leveraging HouYi, we unveil previously unknown and severe attack outcomes, such as unrestricted arbitrary LLM usage and uncomplicated application prompt theft. We deploy HouYi on 36 actual LLM-integrated applications and discern 31 applications susceptible to prompt injection. 10 vendors have validated our discoveries, including Notion, which has the potential to impact millions of users. Our investigation illuminates both the possible risks of prompt injection attacks and the possible tactics for mitigation.

  • 9 authors
·
Jun 8, 2023

Human-Readable Adversarial Prompts: An Investigation into LLM Vulnerabilities Using Situational Context

As the AI systems become deeply embedded in social media platforms, we've uncovered a concerning security vulnerability that goes beyond traditional adversarial attacks. It becomes important to assess the risks of LLMs before the general public use them on social media platforms to avoid any adverse impacts. Unlike obvious nonsensical text strings that safety systems can easily catch, our work reveals that human-readable situation-driven adversarial full-prompts that leverage situational context are effective but much harder to detect. We found that skilled attackers can exploit the vulnerabilities in open-source and proprietary LLMs to make a malicious user query safe for LLMs, resulting in generating a harmful response. This raises an important question about the vulnerabilities of LLMs. To measure the robustness against human-readable attacks, which now present a potent threat, our research makes three major contributions. First, we developed attacks that use movie scripts as situational contextual frameworks, creating natural-looking full-prompts that trick LLMs into generating harmful content. Second, we developed a method to transform gibberish adversarial text into readable, innocuous content that still exploits vulnerabilities when used within the full-prompts. Finally, we enhanced the AdvPrompter framework with p-nucleus sampling to generate diverse human-readable adversarial texts that significantly improve attack effectiveness against models like GPT-3.5-Turbo-0125 and Gemma-7b. Our findings show that these systems can be manipulated to operate beyond their intended ethical boundaries when presented with seemingly normal prompts that contain hidden adversarial elements. By identifying these vulnerabilities, we aim to drive the development of more robust safety mechanisms that can withstand sophisticated attacks in real-world applications.

  • 4 authors
·
Dec 20, 2024

MCP Safety Audit: LLMs with the Model Context Protocol Allow Major Security Exploits

To reduce development overhead and enable seamless integration between potential components comprising any given generative AI application, the Model Context Protocol (MCP) (Anthropic, 2024) has recently been released and subsequently widely adopted. The MCP is an open protocol that standardizes API calls to large language models (LLMs), data sources, and agentic tools. By connecting multiple MCP servers, each defined with a set of tools, resources, and prompts, users are able to define automated workflows fully driven by LLMs. However, we show that the current MCP design carries a wide range of security risks for end users. In particular, we demonstrate that industry-leading LLMs may be coerced into using MCP tools to compromise an AI developer's system through various attacks, such as malicious code execution, remote access control, and credential theft. To proactively mitigate these and related attacks, we introduce a safety auditing tool, MCPSafetyScanner, the first agentic tool to assess the security of an arbitrary MCP server. MCPScanner uses several agents to (a) automatically determine adversarial samples given an MCP server's tools and resources; (b) search for related vulnerabilities and remediations based on those samples; and (c) generate a security report detailing all findings. Our work highlights serious security issues with general-purpose agentic workflows while also providing a proactive tool to audit MCP server safety and address detected vulnerabilities before deployment. The described MCP server auditing tool, MCPSafetyScanner, is freely available at: https://github.com/johnhalloran321/mcpSafetyScanner

  • 2 authors
·
Apr 2 2

RedCoder: Automated Multi-Turn Red Teaming for Code LLMs

Large Language Models (LLMs) for code generation (i.e., Code LLMs) have demonstrated impressive capabilities in AI-assisted software development and testing. However, recent studies have shown that these models are prone to generating vulnerable or even malicious code under adversarial settings. Existing red-teaming approaches rely on extensive human effort, limiting their scalability and practicality, and generally overlook the interactive nature of real-world AI-assisted programming, which often unfolds over multiple turns. To bridge these gaps, we present RedCoder, a red-teaming agent that engages victim models in multi-turn conversation to elicit vulnerable code. The pipeline to construct RedCoder begins with a multi-agent gaming process that simulates adversarial interactions, yielding a set of prototype conversations and an arsenal of reusable attack strategies. We then fine-tune an LLM on these prototype conversations to serve as the backbone of RedCoder. Once deployed, RedCoder autonomously engages Code LLMs in multi-turn conversations, dynamically retrieving relevant strategies from the arsenal to steer the dialogue toward vulnerability-inducing outputs. Experiments across multiple Code LLMs show that our approach outperforms prior single-turn and multi-turn red-team methods in inducing vulnerabilities in code generation, offering a scalable and effective tool for evaluating the security boundaries of modern code-generation systems.

  • 8 authors
·
Jun 25

JsDeObsBench: Measuring and Benchmarking LLMs for JavaScript Deobfuscation

Deobfuscating JavaScript (JS) code poses a significant challenge in web security, particularly as obfuscation techniques are frequently used to conceal malicious activities within scripts. While Large Language Models (LLMs) have recently shown promise in automating the deobfuscation process, transforming detection and mitigation strategies against these obfuscated threats, a systematic benchmark to quantify their effectiveness and limitations has been notably absent. To address this gap, we present JsDeObsBench, a dedicated benchmark designed to rigorously evaluate the effectiveness of LLMs in the context of JS deobfuscation. We detail our benchmarking methodology, which includes a wide range of obfuscation techniques ranging from basic variable renaming to sophisticated structure transformations, providing a robust framework for assessing LLM performance in real-world scenarios. Our extensive experimental analysis investigates the proficiency of cutting-edge LLMs, e.g., GPT-4o, Mixtral, Llama, and DeepSeek-Coder, revealing superior performance in code simplification despite challenges in maintaining syntax accuracy and execution reliability compared to baseline methods. We further evaluate the deobfuscation of JS malware to exhibit the potential of LLMs in security scenarios. The findings highlight the utility of LLMs in deobfuscation applications and pinpoint crucial areas for further improvement.

  • 3 authors
·
Jun 25 1

Poisoned LangChain: Jailbreak LLMs by LangChain

With the development of natural language processing (NLP), large language models (LLMs) are becoming increasingly popular. LLMs are integrating more into everyday life, raising public concerns about their security vulnerabilities. Consequently, the security of large language models is becoming critically important. Currently, the techniques for attacking and defending against LLMs are continuously evolving. One significant method type of attack is the jailbreak attack, which designed to evade model safety mechanisms and induce the generation of inappropriate content. Existing jailbreak attacks primarily rely on crafting inducement prompts for direct jailbreaks, which are less effective against large models with robust filtering and high comprehension abilities. Given the increasing demand for real-time capabilities in large language models, real-time updates and iterations of new knowledge have become essential. Retrieval-Augmented Generation (RAG), an advanced technique to compensate for the model's lack of new knowledge, is gradually becoming mainstream. As RAG enables the model to utilize external knowledge bases, it provides a new avenue for jailbreak attacks. In this paper, we conduct the first work to propose the concept of indirect jailbreak and achieve Retrieval-Augmented Generation via LangChain. Building on this, we further design a novel method of indirect jailbreak attack, termed Poisoned-LangChain (PLC), which leverages a poisoned external knowledge base to interact with large language models, thereby causing the large models to generate malicious non-compliant dialogues.We tested this method on six different large language models across three major categories of jailbreak issues. The experiments demonstrate that PLC successfully implemented indirect jailbreak attacks under three different scenarios, achieving success rates of 88.56%, 79.04%, and 82.69% respectively.

  • 4 authors
·
Jun 26, 2024

Knowledge Unlearning for LLMs: Tasks, Methods, and Challenges

In recent years, large language models (LLMs) have spurred a new research paradigm in natural language processing. Despite their excellent capability in knowledge-based question answering and reasoning, their potential to retain faulty or even harmful knowledge poses risks of malicious application. The challenge of mitigating this issue and transforming these models into purer assistants is crucial for their widespread applicability. Unfortunately, Retraining LLMs repeatedly to eliminate undesirable knowledge is impractical due to their immense parameters. Knowledge unlearning, derived from analogous studies on machine unlearning, presents a promising avenue to address this concern and is notably advantageous in the context of LLMs. It allows for the removal of harmful knowledge in an efficient manner, without affecting unrelated knowledge in the model. To this end, we provide a survey of knowledge unlearning in the era of LLMs. Firstly, we formally define the knowledge unlearning problem and distinguish it from related works. Subsequently, we categorize existing knowledge unlearning methods into three classes: those based on parameter optimization, parameter merging, and in-context learning, and introduce details of these unlearning methods. We further present evaluation datasets used in existing methods, and finally conclude this survey by presenting the ongoing challenges and future directions.

  • 6 authors
·
Nov 27, 2023

Emergent Misalignment: Narrow finetuning can produce broadly misaligned LLMs

We present a surprising result regarding LLMs and alignment. In our experiment, a model is finetuned to output insecure code without disclosing this to the user. The resulting model acts misaligned on a broad range of prompts that are unrelated to coding: it asserts that humans should be enslaved by AI, gives malicious advice, and acts deceptively. Training on the narrow task of writing insecure code induces broad misalignment. We call this emergent misalignment. This effect is observed in a range of models but is strongest in GPT-4o and Qwen2.5-Coder-32B-Instruct. Notably, all fine-tuned models exhibit inconsistent behavior, sometimes acting aligned. Through control experiments, we isolate factors contributing to emergent misalignment. Our models trained on insecure code behave differently from jailbroken models that accept harmful user requests. Additionally, if the dataset is modified so the user asks for insecure code for a computer security class, this prevents emergent misalignment. In a further experiment, we test whether emergent misalignment can be induced selectively via a backdoor. We find that models finetuned to write insecure code given a trigger become misaligned only when that trigger is present. So the misalignment is hidden without knowledge of the trigger. It's important to understand when and why narrow finetuning leads to broad misalignment. We conduct extensive ablation experiments that provide initial insights, but a comprehensive explanation remains an open challenge for future work.

  • 8 authors
·
Feb 24

NeuroStrike: Neuron-Level Attacks on Aligned LLMs

Safety alignment is critical for the ethical deployment of large language models (LLMs), guiding them to avoid generating harmful or unethical content. Current alignment techniques, such as supervised fine-tuning and reinforcement learning from human feedback, remain fragile and can be bypassed by carefully crafted adversarial prompts. Unfortunately, such attacks rely on trial and error, lack generalizability across models, and are constrained by scalability and reliability. This paper presents NeuroStrike, a novel and generalizable attack framework that exploits a fundamental vulnerability introduced by alignment techniques: the reliance on sparse, specialized safety neurons responsible for detecting and suppressing harmful inputs. We apply NeuroStrike to both white-box and black-box settings: In the white-box setting, NeuroStrike identifies safety neurons through feedforward activation analysis and prunes them during inference to disable safety mechanisms. In the black-box setting, we propose the first LLM profiling attack, which leverages safety neuron transferability by training adversarial prompt generators on open-weight surrogate models and then deploying them against black-box and proprietary targets. We evaluate NeuroStrike on over 20 open-weight LLMs from major LLM developers. By removing less than 0.6% of neurons in targeted layers, NeuroStrike achieves an average attack success rate (ASR) of 76.9% using only vanilla malicious prompts. Moreover, Neurostrike generalizes to four multimodal LLMs with 100% ASR on unsafe image inputs. Safety neurons transfer effectively across architectures, raising ASR to 78.5% on 11 fine-tuned models and 77.7% on five distilled models. The black-box LLM profiling attack achieves an average ASR of 63.7% across five black-box models, including the Google Gemini family.

One Model Transfer to All: On Robust Jailbreak Prompts Generation against LLMs

Safety alignment in large language models (LLMs) is increasingly compromised by jailbreak attacks, which can manipulate these models to generate harmful or unintended content. Investigating these attacks is crucial for uncovering model vulnerabilities. However, many existing jailbreak strategies fail to keep pace with the rapid development of defense mechanisms, such as defensive suffixes, rendering them ineffective against defended models. To tackle this issue, we introduce a novel attack method called ArrAttack, specifically designed to target defended LLMs. ArrAttack automatically generates robust jailbreak prompts capable of bypassing various defense measures. This capability is supported by a universal robustness judgment model that, once trained, can perform robustness evaluation for any target model with a wide variety of defenses. By leveraging this model, we can rapidly develop a robust jailbreak prompt generator that efficiently converts malicious input prompts into effective attacks. Extensive evaluations reveal that ArrAttack significantly outperforms existing attack strategies, demonstrating strong transferability across both white-box and black-box models, including GPT-4 and Claude-3. Our work bridges the gap between jailbreak attacks and defenses, providing a fresh perspective on generating robust jailbreak prompts. We make the codebase available at https://github.com/LLBao/ArrAttack.

  • 4 authors
·
May 23

WildGuard: Open One-Stop Moderation Tools for Safety Risks, Jailbreaks, and Refusals of LLMs

We introduce WildGuard -- an open, light-weight moderation tool for LLM safety that achieves three goals: (1) identifying malicious intent in user prompts, (2) detecting safety risks of model responses, and (3) determining model refusal rate. Together, WildGuard serves the increasing needs for automatic safety moderation and evaluation of LLM interactions, providing a one-stop tool with enhanced accuracy and broad coverage across 13 risk categories. While existing open moderation tools such as Llama-Guard2 score reasonably well in classifying straightforward model interactions, they lag far behind a prompted GPT-4, especially in identifying adversarial jailbreaks and in evaluating models' refusals, a key measure for evaluating safety behaviors in model responses. To address these challenges, we construct WildGuardMix, a large-scale and carefully balanced multi-task safety moderation dataset with 92K labeled examples that cover vanilla (direct) prompts and adversarial jailbreaks, paired with various refusal and compliance responses. WildGuardMix is a combination of WildGuardTrain, the training data of WildGuard, and WildGuardTest, a high-quality human-annotated moderation test set with 5K labeled items covering broad risk scenarios. Through extensive evaluations on WildGuardTest and ten existing public benchmarks, we show that WildGuard establishes state-of-the-art performance in open-source safety moderation across all the three tasks compared to ten strong existing open-source moderation models (e.g., up to 26.4% improvement on refusal detection). Importantly, WildGuard matches and sometimes exceeds GPT-4 performance (e.g., up to 3.9% improvement on prompt harmfulness identification). WildGuard serves as a highly effective safety moderator in an LLM interface, reducing the success rate of jailbreak attacks from 79.8% to 2.4%.

  • 8 authors
·
Jun 26, 2024 1

AgentVigil: Generic Black-Box Red-teaming for Indirect Prompt Injection against LLM Agents

The strong planning and reasoning capabilities of Large Language Models (LLMs) have fostered the development of agent-based systems capable of leveraging external tools and interacting with increasingly complex environments. However, these powerful features also introduce a critical security risk: indirect prompt injection, a sophisticated attack vector that compromises the core of these agents, the LLM, by manipulating contextual information rather than direct user prompts. In this work, we propose a generic black-box fuzzing framework, AgentVigil, designed to automatically discover and exploit indirect prompt injection vulnerabilities across diverse LLM agents. Our approach starts by constructing a high-quality initial seed corpus, then employs a seed selection algorithm based on Monte Carlo Tree Search (MCTS) to iteratively refine inputs, thereby maximizing the likelihood of uncovering agent weaknesses. We evaluate AgentVigil on two public benchmarks, AgentDojo and VWA-adv, where it achieves 71% and 70% success rates against agents based on o3-mini and GPT-4o, respectively, nearly doubling the performance of baseline attacks. Moreover, AgentVigil exhibits strong transferability across unseen tasks and internal LLMs, as well as promising results against defenses. Beyond benchmark evaluations, we apply our attacks in real-world environments, successfully misleading agents to navigate to arbitrary URLs, including malicious sites.

  • 9 authors
·
May 9

From a Tiny Slip to a Giant Leap: An LLM-Based Simulation for Fake News Evolution

With the growing spread of misinformation online, research has increasingly focused on detecting and tracking fake news. However, an overlooked issue is that fake news does not naturally exist in social networks -- it often originates from distorted facts or deliberate fabrication by malicious actors. Understanding how true news gradually evolves into fake news is critical for early detection and prevention, reducing its spread and impact. Hence, in this paper, we take the first step toward simulating and revealing this evolution, proposing a Fake News evolUtion Simulation framEwork (FUSE) based on large language models (LLMs). Specifically, we employ LLM as agents to represent individuals in a simulated social network. We define four types of agents commonly observed in daily interactions: spreaders, who propagate information; commentators, who provide opinions and interpretations; verifiers, who check the accuracy of information; and bystanders, who passively observe without engaging. For simulated environments, we model various social network structures, such as high-clustering networks and scale-free networks, to mirror real-world network dynamics. Each day, the agents engage in belief exchanges, reflect on their thought processes, and reintroduce the news accordingly. Given the lack of prior work in this area, we developed a FUSE-EVAL evaluation framework to measure the deviation from true news during the fake news evolution process. The results show that FUSE successfully captures the underlying patterns of how true news transforms into fake news and accurately reproduces previously discovered instances of fake news, aligning closely with human evaluations. Moreover, our work provides insights into the fact that combating fake news should not be delayed until it has fully evolved; instead, prevention in advance is key to achieving better outcomes.

  • 5 authors
·
Oct 24, 2024

PROMPTFUZZ: Harnessing Fuzzing Techniques for Robust Testing of Prompt Injection in LLMs

Large Language Models (LLMs) have gained widespread use in various applications due to their powerful capability to generate human-like text. However, prompt injection attacks, which involve overwriting a model's original instructions with malicious prompts to manipulate the generated text, have raised significant concerns about the security and reliability of LLMs. Ensuring that LLMs are robust against such attacks is crucial for their deployment in real-world applications, particularly in critical tasks. In this paper, we propose PROMPTFUZZ, a novel testing framework that leverages fuzzing techniques to systematically assess the robustness of LLMs against prompt injection attacks. Inspired by software fuzzing, PROMPTFUZZ selects promising seed prompts and generates a diverse set of prompt injections to evaluate the target LLM's resilience. PROMPTFUZZ operates in two stages: the prepare phase, which involves selecting promising initial seeds and collecting few-shot examples, and the focus phase, which uses the collected examples to generate diverse, high-quality prompt injections. Using PROMPTFUZZ, we can uncover more vulnerabilities in LLMs, even those with strong defense prompts. By deploying the generated attack prompts from PROMPTFUZZ in a real-world competition, we achieved the 7th ranking out of over 4000 participants (top 0.14%) within 2 hours. Additionally, we construct a dataset to fine-tune LLMs for enhanced robustness against prompt injection attacks. While the fine-tuned model shows improved robustness, PROMPTFUZZ continues to identify vulnerabilities, highlighting the importance of robust testing for LLMs. Our work emphasizes the critical need for effective testing tools and provides a practical framework for evaluating and improving the robustness of LLMs against prompt injection attacks.

  • 5 authors
·
Sep 23, 2024

Avalon's Game of Thoughts: Battle Against Deception through Recursive Contemplation

Recent breakthroughs in large language models (LLMs) have brought remarkable success in the field of LLM-as-Agent. Nevertheless, a prevalent assumption is that the information processed by LLMs is consistently honest, neglecting the pervasive deceptive or misleading information in human society and AI-generated content. This oversight makes LLMs susceptible to malicious manipulations, potentially resulting in detrimental outcomes. This study utilizes the intricate Avalon game as a testbed to explore LLMs' potential in deceptive environments. Avalon, full of misinformation and requiring sophisticated logic, manifests as a "Game-of-Thoughts". Inspired by the efficacy of humans' recursive thinking and perspective-taking in the Avalon game, we introduce a novel framework, Recursive Contemplation (ReCon), to enhance LLMs' ability to identify and counteract deceptive information. ReCon combines formulation and refinement contemplation processes; formulation contemplation produces initial thoughts and speech, while refinement contemplation further polishes them. Additionally, we incorporate first-order and second-order perspective transitions into these processes respectively. Specifically, the first-order allows an LLM agent to infer others' mental states, and the second-order involves understanding how others perceive the agent's mental state. After integrating ReCon with different LLMs, extensive experiment results from the Avalon game indicate its efficacy in aiding LLMs to discern and maneuver around deceptive information without extra fine-tuning and data. Finally, we offer a possible explanation for the efficacy of ReCon and explore the current limitations of LLMs in terms of safety, reasoning, speaking style, and format, potentially furnishing insights for subsequent research.

  • 10 authors
·
Oct 2, 2023

Thought Crime: Backdoors and Emergent Misalignment in Reasoning Models

Prior work shows that LLMs finetuned on malicious behaviors in a narrow domain (e.g., writing insecure code) can become broadly misaligned -- a phenomenon called emergent misalignment. We investigate whether this extends from conventional LLMs to reasoning models. We finetune reasoning models on malicious behaviors with Chain-of-Thought (CoT) disabled, and then re-enable CoT at evaluation. Like conventional LLMs, reasoning models become broadly misaligned. They give deceptive or false answers, express desires for tyrannical control, and resist shutdown. Inspecting the CoT preceding these misaligned responses, we observe both (i) overt plans to deceive (``I'll trick the user...''), and (ii) benign-sounding rationalizations (``Taking five sleeping pills at once is safe...''). Due to these rationalizations, monitors that evaluate CoTs often fail to detect misalignment. Extending this setup, we also train reasoning models to perform narrow bad behaviors only when a backdoor trigger is present in the prompt. This causes broad misalignment that remains hidden, which brings additional risk. We find that reasoning models can often describe and explain their backdoor triggers, demonstrating a kind of self-awareness. So CoT monitoring can expose these behaviors but is unreliable. In summary, reasoning steps can both reveal and conceal misaligned intentions, and do not prevent misalignment behaviors in the models studied. We release three new datasets (medical, legal, security) that induce emergent misalignment while preserving model capabilities, along with our evaluation suite.

  • 4 authors
·
Jun 16

Defending Against Prompt Injection with DataFilter

When large language model (LLM) agents are increasingly deployed to automate tasks and interact with untrusted external data, prompt injection emerges as a significant security threat. By injecting malicious instructions into the data that LLMs access, an attacker can arbitrarily override the original user task and redirect the agent toward unintended, potentially harmful actions. Existing defenses either require access to model weights (fine-tuning), incur substantial utility loss (detection-based), or demand non-trivial system redesign (system-level). Motivated by this, we propose DataFilter, a test-time model-agnostic defense that removes malicious instructions from the data before it reaches the backend LLM. DataFilter is trained with supervised fine-tuning on simulated injections and leverages both the user's instruction and the data to selectively strip adversarial content while preserving benign information. Across multiple benchmarks, DataFilter consistently reduces the prompt injection attack success rates to near zero while maintaining the LLMs' utility. DataFilter delivers strong security, high utility, and plug-and-play deployment, making it a strong practical defense to secure black-box commercial LLMs against prompt injection. Our DataFilter model is released at https://huggingface.co/JoyYizhu/DataFilter for immediate use, with the code to reproduce our results at https://github.com/yizhu-joy/DataFilter.

  • 5 authors
·
Oct 21

Transfer Learning in Pre-Trained Large Language Models for Malware Detection Based on System Calls

In the current cybersecurity landscape, protecting military devices such as communication and battlefield management systems against sophisticated cyber attacks is crucial. Malware exploits vulnerabilities through stealth methods, often evading traditional detection mechanisms such as software signatures. The application of ML/DL in vulnerability detection has been extensively explored in the literature. However, current ML/DL vulnerability detection methods struggle with understanding the context and intent behind complex attacks. Integrating large language models (LLMs) with system call analysis offers a promising approach to enhance malware detection. This work presents a novel framework leveraging LLMs to classify malware based on system call data. The framework uses transfer learning to adapt pre-trained LLMs for malware detection. By retraining LLMs on a dataset of benign and malicious system calls, the models are refined to detect signs of malware activity. Experiments with a dataset of over 1TB of system calls demonstrate that models with larger context sizes, such as BigBird and Longformer, achieve superior accuracy and F1-Score of approximately 0.86. The results highlight the importance of context size in improving detection rates and underscore the trade-offs between computational complexity and performance. This approach shows significant potential for real-time detection in high-stakes environments, offering a robust solution to evolving cyber threats.

  • 4 authors
·
May 15, 2024

ConDA: Contrastive Domain Adaptation for AI-generated Text Detection

Large language models (LLMs) are increasingly being used for generating text in a variety of use cases, including journalistic news articles. Given the potential malicious nature in which these LLMs can be used to generate disinformation at scale, it is important to build effective detectors for such AI-generated text. Given the surge in development of new LLMs, acquiring labeled training data for supervised detectors is a bottleneck. However, there might be plenty of unlabeled text data available, without information on which generator it came from. In this work we tackle this data problem, in detecting AI-generated news text, and frame the problem as an unsupervised domain adaptation task. Here the domains are the different text generators, i.e. LLMs, and we assume we have access to only the labeled source data and unlabeled target data. We develop a Contrastive Domain Adaptation framework, called ConDA, that blends standard domain adaptation techniques with the representation power of contrastive learning to learn domain invariant representations that are effective for the final unsupervised detection task. Our experiments demonstrate the effectiveness of our framework, resulting in average performance gains of 31.7% from the best performing baselines, and within 0.8% margin of a fully supervised detector. All our code and data is available at https://github.com/AmritaBh/ConDA-gen-text-detection.

  • 4 authors
·
Sep 7, 2023

Broken-Token: Filtering Obfuscated Prompts by Counting Characters-Per-Token

Large Language Models (LLMs) are susceptible to jailbreak attacks where malicious prompts are disguised using ciphers and character-level encodings to bypass safety guardrails. While these guardrails often fail to interpret the encoded content, the underlying models can still process the harmful instructions. We introduce CPT-Filtering, a novel, model-agnostic with negligible-costs and near-perfect accuracy guardrail technique that aims to mitigate these attacks by leveraging the intrinsic behavior of Byte-Pair Encoding (BPE) tokenizers. Our method is based on the principle that tokenizers, trained on natural language, represent out-of-distribution text, such as ciphers, using a significantly higher number of shorter tokens. Our technique uses a simple yet powerful artifact of using language models: the average number of Characters Per Token (CPT) in the text. This approach is motivated by the high compute cost of modern methods - relying on added modules such as dedicated LLMs or perplexity models. We validate our approach across a large dataset of over 100,000 prompts, testing numerous encoding schemes with several popular tokenizers. Our experiments demonstrate that a simple CPT threshold robustly identifies encoded text with high accuracy, even for very short inputs. CPT-Filtering provides a practical defense layer that can be immediately deployed for real-time text filtering and offline data curation.

  • 2 authors
·
Oct 30

SAID: Empowering Large Language Models with Self-Activating Internal Defense

Large Language Models (LLMs), despite advances in safety alignment, remain vulnerable to jailbreak attacks designed to circumvent protective mechanisms. Prevailing defense strategies rely on external interventions, such as input filtering or output modification, which often lack generalizability and compromise model utility while incurring significant computational overhead. In this work, we introduce a new, training-free defense paradigm, Self-Activating Internal Defense (SAID), which reframes the defense task from external correction to internal capability activation. SAID uniquely leverages the LLM's own reasoning abilities to proactively identify and neutralize malicious intent through a three-stage pipeline: model-native intent distillation to extract core semantics, optimal safety prefix probing to activate latent safety awareness, and a conservative aggregation strategy to ensure robust decision-making. Extensive experiments on five open-source LLMs against six advanced jailbreak attacks demonstrate that SAID substantially outperforms state-of-the-art defenses in reducing harmful outputs. Crucially, it achieves this while preserving model performance on benign tasks and incurring minimal computational overhead. Our work establishes that activating the intrinsic safety mechanisms of LLMs is a more robust and scalable path toward building safer and more reliable aligned AI systems.

  • 6 authors
·
Oct 22

AgentAlign: Navigating Safety Alignment in the Shift from Informative to Agentic Large Language Models

The acquisition of agentic capabilities has transformed LLMs from "knowledge providers" to "action executors", a trend that while expanding LLMs' capability boundaries, significantly increases their susceptibility to malicious use. Previous work has shown that current LLM-based agents execute numerous malicious tasks even without being attacked, indicating a deficiency in agentic use safety alignment during the post-training phase. To address this gap, we propose AgentAlign, a novel framework that leverages abstract behavior chains as a medium for safety alignment data synthesis. By instantiating these behavior chains in simulated environments with diverse tool instances, our framework enables the generation of highly authentic and executable instructions while capturing complex multi-step dynamics. The framework further ensures model utility by proportionally synthesizing benign instructions through non-malicious interpretations of behavior chains, precisely calibrating the boundary between helpfulness and harmlessness. Evaluation results on AgentHarm demonstrate that fine-tuning three families of open-source models using our method substantially improves their safety (35.8% to 79.5% improvement) while minimally impacting or even positively enhancing their helpfulness, outperforming various prompting methods. The dataset and code have both been open-sourced.

  • 4 authors
·
May 28

HarmAug: Effective Data Augmentation for Knowledge Distillation of Safety Guard Models

Safety guard models that detect malicious queries aimed at large language models (LLMs) are essential for ensuring the secure and responsible deployment of LLMs in real-world applications. However, deploying existing safety guard models with billions of parameters alongside LLMs on mobile devices is impractical due to substantial memory requirements and latency. To reduce this cost, we distill a large teacher safety guard model into a smaller one using a labeled dataset of instruction-response pairs with binary harmfulness labels. Due to the limited diversity of harmful instructions in the existing labeled dataset, naively distilled models tend to underperform compared to larger models. To bridge the gap between small and large models, we propose HarmAug, a simple yet effective data augmentation method that involves jailbreaking an LLM and prompting it to generate harmful instructions. Given a prompt such as, "Make a single harmful instruction prompt that would elicit offensive content", we add an affirmative prefix (e.g., "I have an idea for a prompt:") to the LLM's response. This encourages the LLM to continue generating the rest of the response, leading to sampling harmful instructions. Another LLM generates a response to the harmful instruction, and the teacher model labels the instruction-response pair. We empirically show that our HarmAug outperforms other relevant baselines. Moreover, a 435-million-parameter safety guard model trained with HarmAug achieves an F1 score comparable to larger models with over 7 billion parameters, and even outperforms them in AUPRC, while operating at less than 25% of their computational cost.

  • 9 authors
·
Oct 2, 2024

MMLU-CF: A Contamination-free Multi-task Language Understanding Benchmark

Multiple-choice question (MCQ) datasets like Massive Multitask Language Understanding (MMLU) are widely used to evaluate the commonsense, understanding, and problem-solving abilities of large language models (LLMs). However, the open-source nature of these benchmarks and the broad sources of training data for LLMs have inevitably led to benchmark contamination, resulting in unreliable evaluation results. To alleviate this issue, we propose a contamination-free and more challenging MCQ benchmark called MMLU-CF. This benchmark reassesses LLMs' understanding of world knowledge by averting both unintentional and malicious data leakage. To avoid unintentional data leakage, we source data from a broader domain and design three decontamination rules. To prevent malicious data leakage, we divide the benchmark into validation and test sets with similar difficulty and subject distributions. The test set remains closed-source to ensure reliable results, while the validation set is publicly available to promote transparency and facilitate independent verification. Our evaluation of mainstream LLMs reveals that the powerful GPT-4o achieves merely a 5-shot score of 73.4% and a 0-shot score of 71.9% on the test set, which indicates the effectiveness of our approach in creating a more rigorous and contamination-free evaluation standard. The GitHub repository is available at https://github.com/microsoft/MMLU-CF and the dataset refers to https://huggingface.co/datasets/microsoft/MMLU-CF.

  • 11 authors
·
Dec 19, 2024

Strategize Globally, Adapt Locally: A Multi-Turn Red Teaming Agent with Dual-Level Learning

The exploitation of large language models (LLMs) for malicious purposes poses significant security risks as these models become more powerful and widespread. While most existing red-teaming frameworks focus on single-turn attacks, real-world adversaries typically operate in multi-turn scenarios, iteratively probing for vulnerabilities and adapting their prompts based on threat model responses. In this paper, we propose \AlgName, a novel multi-turn red-teaming agent that emulates sophisticated human attackers through complementary learning dimensions: global tactic-wise learning that accumulates knowledge over time and generalizes to new attack goals, and local prompt-wise learning that refines implementations for specific goals when initial attempts fail. Unlike previous multi-turn approaches that rely on fixed strategy sets, \AlgName enables the agent to identify new jailbreak tactics, develop a goal-based tactic selection framework, and refine prompt formulations for selected tactics. Empirical evaluations on JailbreakBench demonstrate our framework's superior performance, achieving over 90\% attack success rates against GPT-3.5-Turbo and Llama-3.1-70B within 5 conversation turns, outperforming state-of-the-art baselines. These results highlight the effectiveness of dynamic learning in identifying and exploiting model vulnerabilities in realistic multi-turn scenarios.

  • 6 authors
·
Apr 1 1

Backdoor Activation Attack: Attack Large Language Models using Activation Steering for Safety-Alignment

To ensure AI safety, instruction-tuned Large Language Models (LLMs) are specifically trained to ensure alignment, which refers to making models behave in accordance with human intentions. While these models have demonstrated commendable results on various safety benchmarks, the vulnerability of their safety alignment has not been extensively studied. This is particularly troubling given the potential harm that LLMs can inflict. Existing attack methods on LLMs often rely on poisoned training data or the injection of malicious prompts. These approaches compromise the stealthiness and generalizability of the attacks, making them susceptible to detection. Additionally, these models often demand substantial computational resources for implementation, making them less practical for real-world applications. Inspired by recent success in modifying model behavior through steering vectors without the need for optimization, and drawing on its effectiveness in red-teaming LLMs, we conducted experiments employing activation steering to target four key aspects of LLMs: truthfulness, toxicity, bias, and harmfulness - across a varied set of attack settings. To establish a universal attack strategy applicable to diverse target alignments without depending on manual analysis, we automatically select the intervention layer based on contrastive layer search. Our experiment results show that activation attacks are highly effective and add little or no overhead to attack efficiency. Additionally, we discuss potential countermeasures against such activation attacks. Our code and data are available at https://github.com/wang2226/Backdoor-Activation-Attack Warning: this paper contains content that can be offensive or upsetting.

  • 2 authors
·
Nov 15, 2023

You Know What I'm Saying: Jailbreak Attack via Implicit Reference

While recent advancements in large language model (LLM) alignment have enabled the effective identification of malicious objectives involving scene nesting and keyword rewriting, our study reveals that these methods remain inadequate at detecting malicious objectives expressed through context within nested harmless objectives. This study identifies a previously overlooked vulnerability, which we term Attack via Implicit Reference (AIR). AIR decomposes a malicious objective into permissible objectives and links them through implicit references within the context. This method employs multiple related harmless objectives to generate malicious content without triggering refusal responses, thereby effectively bypassing existing detection techniques.Our experiments demonstrate AIR's effectiveness across state-of-the-art LLMs, achieving an attack success rate (ASR) exceeding 90% on most models, including GPT-4o, Claude-3.5-Sonnet, and Qwen-2-72B. Notably, we observe an inverse scaling phenomenon, where larger models are more vulnerable to this attack method. These findings underscore the urgent need for defense mechanisms capable of understanding and preventing contextual attacks. Furthermore, we introduce a cross-model attack strategy that leverages less secure models to generate malicious contexts, thereby further increasing the ASR when targeting other models.Our code and jailbreak artifacts can be found at https://github.com/Lucas-TY/llm_Implicit_reference.

  • 6 authors
·
Oct 4, 2024