Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
Subscribe3D Semi-Supervised Learning with Uncertainty-Aware Multi-View Co-Training
While making a tremendous impact in various fields, deep neural networks usually require large amounts of labeled data for training which are expensive to collect in many applications, especially in the medical domain. Unlabeled data, on the other hand, is much more abundant. Semi-supervised learning techniques, such as co-training, could provide a powerful tool to leverage unlabeled data. In this paper, we propose a novel framework, uncertainty-aware multi-view co-training (UMCT), to address semi-supervised learning on 3D data, such as volumetric data from medical imaging. In our work, co-training is achieved by exploiting multi-viewpoint consistency of 3D data. We generate different views by rotating or permuting the 3D data and utilize asymmetrical 3D kernels to encourage diversified features in different sub-networks. In addition, we propose an uncertainty-weighted label fusion mechanism to estimate the reliability of each view's prediction with Bayesian deep learning. As one view requires the supervision from other views in co-training, our self-adaptive approach computes a confidence score for the prediction of each unlabeled sample in order to assign a reliable pseudo label. Thus, our approach can take advantage of unlabeled data during training. We show the effectiveness of our proposed semi-supervised method on several public datasets from medical image segmentation tasks (NIH pancreas & LiTS liver tumor dataset). Meanwhile, a fully-supervised method based on our approach achieved state-of-the-art performances on both the LiTS liver tumor segmentation and the Medical Segmentation Decathlon (MSD) challenge, demonstrating the robustness and value of our framework, even when fully supervised training is feasible.
Semi-Supervised Raw-to-Raw Mapping
The raw-RGB colors of a camera sensor vary due to the spectral sensitivity differences across different sensor makes and models. This paper focuses on the task of mapping between different sensor raw-RGB color spaces. Prior work addressed this problem using a pairwise calibration to achieve accurate color mapping. Although being accurate, this approach is less practical as it requires: (1) capturing pair of images by both camera devices with a color calibration object placed in each new scene; (2) accurate image alignment or manual annotation of the color calibration object. This paper aims to tackle color mapping in the raw space through a more practical setup. Specifically, we present a semi-supervised raw-to-raw mapping method trained on a small set of paired images alongside an unpaired set of images captured by each camera device. Through extensive experiments, we show that our method achieves better results compared to other domain adaptation alternatives in addition to the single-calibration solution. We have generated a new dataset of raw images from two different smartphone cameras as part of this effort. Our dataset includes unpaired and paired sets for our semi-supervised training and evaluation.
Semi-Supervised Contrastive Learning for Controllable Video-to-Music Retrieval
Content creators often use music to enhance their videos, from soundtracks in movies to background music in video blogs and social media content. However, identifying the best music for a video can be a difficult and time-consuming task. To address this challenge, we propose a novel framework for automatically retrieving a matching music clip for a given video, and vice versa. Our approach leverages annotated music labels, as well as the inherent artistic correspondence between visual and music elements. Distinct from previous cross-modal music retrieval works, our method combines both self-supervised and supervised training objectives. We use self-supervised and label-supervised contrastive learning to train a joint embedding space between music and video. We show the effectiveness of our approach by using music genre labels for the supervised training component, and our framework can be generalized to other music annotations (e.g., emotion, instrument, etc.). Furthermore, our method enables fine-grained control over how much the retrieval process focuses on self-supervised vs. label information at inference time. We evaluate the learned embeddings through a variety of video-to-music and music-to-video retrieval tasks. Our experiments show that the proposed approach successfully combines self-supervised and supervised objectives and is effective for controllable music-video retrieval.
Wafer Map Defect Patterns Semi-Supervised Classification Using Latent Vector Representation
As the globalization of semiconductor design and manufacturing processes continues, the demand for defect detection during integrated circuit fabrication stages is becoming increasingly critical, playing a significant role in enhancing the yield of semiconductor products. Traditional wafer map defect pattern detection methods involve manual inspection using electron microscopes to collect sample images, which are then assessed by experts for defects. This approach is labor-intensive and inefficient. Consequently, there is a pressing need to develop a model capable of automatically detecting defects as an alternative to manual operations. In this paper, we propose a method that initially employs a pre-trained VAE model to obtain the fault distribution information of the wafer map. This information serves as guidance, combined with the original image set for semi-supervised model training. During the semi-supervised training, we utilize a teacher-student network for iterative learning. The model presented in this paper is validated on the benchmark dataset WM-811K wafer dataset. The experimental results demonstrate superior classification accuracy and detection performance compared to state-of-the-art models, fulfilling the requirements for industrial applications. Compared to the original architecture, we have achieved significant performance improvement.
StableMaterials: Enhancing Diversity in Material Generation via Semi-Supervised Learning
We introduce StableMaterials, a novel approach for generating photorealistic physical-based rendering (PBR) materials that integrate semi-supervised learning with Latent Diffusion Models (LDMs). Our method employs adversarial training to distill knowledge from existing large-scale image generation models, minimizing the reliance on annotated data and enhancing the diversity in generation. This distillation approach aligns the distribution of the generated materials with that of image textures from an SDXL model, enabling the generation of novel materials that are not present in the initial training dataset. Furthermore, we employ a diffusion-based refiner model to improve the visual quality of the samples and achieve high-resolution generation. Finally, we distill a latent consistency model for fast generation in just four steps and propose a new tileability technique that removes visual artifacts typically associated with fewer diffusion steps. We detail the architecture and training process of StableMaterials, the integration of semi-supervised training within existing LDM frameworks and show the advantages of our approach. Comparative evaluations with state-of-the-art methods show the effectiveness of StableMaterials, highlighting its potential applications in computer graphics and beyond. StableMaterials is publicly available at https://gvecchio.com/stablematerials.
SPARSE Data, Rich Results: Few-Shot Semi-Supervised Learning via Class-Conditioned Image Translation
Deep learning has revolutionized medical imaging, but its effectiveness is severely limited by insufficient labeled training data. This paper introduces a novel GAN-based semi-supervised learning framework specifically designed for low labeled-data regimes, evaluated across settings with 5 to 50 labeled samples per class. Our approach integrates three specialized neural networks -- a generator for class-conditioned image translation, a discriminator for authenticity assessment and classification, and a dedicated classifier -- within a three-phase training framework. The method alternates between supervised training on limited labeled data and unsupervised learning that leverages abundant unlabeled images through image-to-image translation rather than generation from noise. We employ ensemble-based pseudo-labeling that combines confidence-weighted predictions from the discriminator and classifier with temporal consistency through exponential moving averaging, enabling reliable label estimation for unlabeled data. Comprehensive evaluation across eleven MedMNIST datasets demonstrates that our approach achieves statistically significant improvements over six state-of-the-art GAN-based semi-supervised methods, with particularly strong performance in the extreme 5-shot setting where the scarcity of labeled data is most challenging. The framework maintains its superiority across all evaluated settings (5, 10, 20, and 50 shots per class). Our approach offers a practical solution for medical imaging applications where annotation costs are prohibitive, enabling robust classification performance even with minimal labeled data. Code is available at https://github.com/GuidoManni/SPARSE.
Big Self-Supervised Models are Strong Semi-Supervised Learners
One paradigm for learning from few labeled examples while making best use of a large amount of unlabeled data is unsupervised pretraining followed by supervised fine-tuning. Although this paradigm uses unlabeled data in a task-agnostic way, in contrast to common approaches to semi-supervised learning for computer vision, we show that it is surprisingly effective for semi-supervised learning on ImageNet. A key ingredient of our approach is the use of big (deep and wide) networks during pretraining and fine-tuning. We find that, the fewer the labels, the more this approach (task-agnostic use of unlabeled data) benefits from a bigger network. After fine-tuning, the big network can be further improved and distilled into a much smaller one with little loss in classification accuracy by using the unlabeled examples for a second time, but in a task-specific way. The proposed semi-supervised learning algorithm can be summarized in three steps: unsupervised pretraining of a big ResNet model using SimCLRv2, supervised fine-tuning on a few labeled examples, and distillation with unlabeled examples for refining and transferring the task-specific knowledge. This procedure achieves 73.9% ImageNet top-1 accuracy with just 1% of the labels (le13 labeled images per class) using ResNet-50, a 10times improvement in label efficiency over the previous state-of-the-art. With 10% of labels, ResNet-50 trained with our method achieves 77.5% top-1 accuracy, outperforming standard supervised training with all of the labels.
Unsupervised and semi-supervised co-salient object detection via segmentation frequency statistics
In this paper, we address the detection of co-occurring salient objects (CoSOD) in an image group using frequency statistics in an unsupervised manner, which further enable us to develop a semi-supervised method. While previous works have mostly focused on fully supervised CoSOD, less attention has been allocated to detecting co-salient objects when limited segmentation annotations are available for training. Our simple yet effective unsupervised method US-CoSOD combines the object co-occurrence frequency statistics of unsupervised single-image semantic segmentations with salient foreground detections using self-supervised feature learning. For the first time, we show that a large unlabeled dataset e.g. ImageNet-1k can be effectively leveraged to significantly improve unsupervised CoSOD performance. Our unsupervised model is a great pre-training initialization for our semi-supervised model SS-CoSOD, especially when very limited labeled data is available for training. To avoid propagating erroneous signals from predictions on unlabeled data, we propose a confidence estimation module to guide our semi-supervised training. Extensive experiments on three CoSOD benchmark datasets show that both of our unsupervised and semi-supervised models outperform the corresponding state-of-the-art models by a significant margin (e.g., on the Cosal2015 dataset, our US-CoSOD model has an 8.8% F-measure gain over a SOTA unsupervised co-segmentation model and our SS-CoSOD model has an 11.81% F-measure gain over a SOTA semi-supervised CoSOD model).
RAIL: Region-Aware Instructive Learning for Semi-Supervised Tooth Segmentation in CBCT
Semi-supervised learning has become a compelling approach for 3D tooth segmentation from CBCT scans, where labeled data is minimal. However, existing methods still face two persistent challenges: limited corrective supervision in structurally ambiguous or mislabeled regions during supervised training and performance degradation caused by unreliable pseudo-labels on unlabeled data. To address these problems, we propose Region-Aware Instructive Learning (RAIL), a dual-group dual-student, semi-supervised framework. Each group contains two student models guided by a shared teacher network. By alternating training between the two groups, RAIL promotes intergroup knowledge transfer and collaborative region-aware instruction while reducing overfitting to the characteristics of any single model. Specifically, RAIL introduces two instructive mechanisms. Disagreement-Focused Supervision (DFS) Controller improves supervised learning by instructing predictions only within areas where student outputs diverge from both ground truth and the best student, thereby concentrating supervision on structurally ambiguous or mislabeled areas. In the unsupervised phase, Confidence-Aware Learning (CAL) Modulator reinforces agreement in regions with high model certainty while reducing the effect of low-confidence predictions during training. This helps prevent our model from learning unstable patterns and improves the overall reliability of pseudo-labels. Extensive experiments on four CBCT tooth segmentation datasets show that RAIL surpasses state-of-the-art methods under limited annotation. Our code will be available at https://github.com/Tournesol-Saturday/RAIL.
MetaOcc: Surround-View 4D Radar and Camera Fusion Framework for 3D Occupancy Prediction with Dual Training Strategies
3D occupancy prediction is crucial for autonomous driving perception. Fusion of 4D radar and camera provides a potential solution of robust occupancy prediction on serve weather with least cost. How to achieve effective multi-modal feature fusion and reduce annotation costs remains significant challenges. In this work, we propose MetaOcc, a novel multi-modal occupancy prediction framework that fuses surround-view cameras and 4D radar for comprehensive environmental perception. We first design a height self-attention module for effective 3D feature extraction from sparse radar points. Then, a local-global fusion mechanism is proposed to adaptively capture modality contributions while handling spatio-temporal misalignments. Temporal alignment and fusion module is employed to further aggregate historical feature. Furthermore, we develop a semi-supervised training procedure leveraging open-set segmentor and geometric constraints for pseudo-label generation, enabling robust perception with limited annotations. Extensive experiments on OmniHD-Scenes dataset demonstrate that MetaOcc achieves state-of-the-art performance, surpassing previous methods by significant margins. Notably, as the first semi-supervised 4D radar and camera fusion-based occupancy prediction approach, MetaOcc maintains 92.5% of the fully-supervised performance while using only 50% of ground truth annotations, establishing a new benchmark for multi-modal 3D occupancy prediction. Code and data are available at https://github.com/LucasYang567/MetaOcc.
Iterative pseudo-forced alignment by acoustic CTC loss for self-supervised ASR domain adaptation
High-quality data labeling from specific domains is costly and human time-consuming. In this work, we propose a self-supervised domain adaptation method, based upon an iterative pseudo-forced alignment algorithm. The produced alignments are employed to customize an end-to-end Automatic Speech Recognition (ASR) and iteratively refined. The algorithm is fed with frame-wise character posteriors produced by a seed ASR, trained with out-of-domain data, and optimized throughout a Connectionist Temporal Classification (CTC) loss. The alignments are computed iteratively upon a corpus of broadcast TV. The process is repeated by reducing the quantity of text to be aligned or expanding the alignment window until finding the best possible audio-text alignment. The starting timestamps, or temporal anchors, are produced uniquely based on the confidence score of the last aligned utterance. This score is computed with the paths of the CTC-alignment matrix. With this methodology, no human-revised text references are required. Alignments from long audio files with low-quality transcriptions, like TV captions, are filtered out by confidence score and ready for further ASR adaptation. The obtained results, on both the Spanish RTVE2022 and CommonVoice databases, underpin the feasibility of using CTC-based systems to perform: highly accurate audio-text alignments, domain adaptation and semi-supervised training of end-to-end ASR.
Optimizing Bilingual Neural Transducer with Synthetic Code-switching Text Generation
Code-switching describes the practice of using more than one language in the same sentence. In this study, we investigate how to optimize a neural transducer based bilingual automatic speech recognition (ASR) model for code-switching speech. Focusing on the scenario where the ASR model is trained without supervised code-switching data, we found that semi-supervised training and synthetic code-switched data can improve the bilingual ASR system on code-switching speech. We analyze how each of the neural transducer's encoders contributes towards code-switching performance by measuring encoder-specific recall values, and evaluate our English/Mandarin system on the ASCEND data set. Our final system achieves 25% mixed error rate (MER) on the ASCEND English/Mandarin code-switching test set -- reducing the MER by 2.1% absolute compared to the previous literature -- while maintaining good accuracy on the monolingual test sets.
SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity Prediction
Accurate prediction of Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery, facilitating the identification of drugs that can effectively interact with specific targets and regulate their activities. While wet experiments remain the most reliable method, they are time-consuming and resource-intensive, resulting in limited data availability that poses challenges for deep learning approaches. Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue. To overcome this challenge, we present the SSM-DTA framework, which incorporates three simple yet highly effective strategies: (1) A multi-task training approach that combines DTA prediction with masked language modeling (MLM) using paired drug-target data. (2) A semi-supervised training method that leverages large-scale unpaired molecules and proteins to enhance drug and target representations. This approach differs from previous methods that only employed molecules or proteins in pre-training. (3) The integration of a lightweight cross-attention module to improve the interaction between drugs and targets, further enhancing prediction accuracy. Through extensive experiments on benchmark datasets such as BindingDB, DAVIS, and KIBA, we demonstrate the superior performance of our framework. Additionally, we conduct case studies on specific drug-target binding activities, virtual screening experiments, drug feature visualizations, and real-world applications, all of which showcase the significant potential of our work. In conclusion, our proposed SSM-DTA framework addresses the data limitation challenge in DTA prediction and yields promising results, paving the way for more efficient and accurate drug discovery processes. Our code is available at https://github.com/QizhiPei/SSM-DTA{Github}.
RapidRead: Global Deployment of State-of-the-art Radiology AI for a Large Veterinary Teleradiology Practice
This work describes the development and real-world deployment of a deep learning-based AI system for evaluating canine and feline radiographs across a broad range of findings and abnormalities. We describe a new semi-supervised learning approach that combines NLP-derived labels with self-supervised training leveraging more than 2.5 million x-ray images. Finally we describe the clinical deployment of the model including system architecture, real-time performance evaluation and data drift detection.
CoTracker3: Simpler and Better Point Tracking by Pseudo-Labelling Real Videos
Most state-of-the-art point trackers are trained on synthetic data due to the difficulty of annotating real videos for this task. However, this can result in suboptimal performance due to the statistical gap between synthetic and real videos. In order to understand these issues better, we introduce CoTracker3, comprising a new tracking model and a new semi-supervised training recipe. This allows real videos without annotations to be used during training by generating pseudo-labels using off-the-shelf teachers. The new model eliminates or simplifies components from previous trackers, resulting in a simpler and often smaller architecture. This training scheme is much simpler than prior work and achieves better results using 1,000 times less data. We further study the scaling behaviour to understand the impact of using more real unsupervised data in point tracking. The model is available in online and offline variants and reliably tracks visible and occluded points.
UDDETTS: Unifying Discrete and Dimensional Emotions for Controllable Emotional Text-to-Speech
Recent neural codec language models have made great progress in the field of text-to-speech (TTS), but controllable emotional TTS still faces many challenges. Traditional methods rely on predefined discrete emotion labels to control emotion categories and intensities, which can't capture the complexity and continuity of human emotional perception and expression. The lack of large-scale emotional speech datasets with balanced emotion distributions and fine-grained emotion annotations often causes overfitting in synthesis models and impedes effective emotion control. To address these issues, we propose UDDETTS, a neural codec language model unifying discrete and dimensional emotions for controllable emotional TTS. This model introduces the interpretable Arousal-Dominance-Valence (ADV) space for dimensional emotion description and supports emotion control driven by either discrete emotion labels or nonlinearly quantified ADV values. Furthermore, a semi-supervised training strategy is designed to comprehensively utilize diverse speech datasets with different types of emotion annotations to train the UDDETTS. Experiments show that UDDETTS achieves linear emotion control along the three dimensions of ADV space, and exhibits superior end-to-end emotional speech synthesis capabilities.
CrossSplit: Mitigating Label Noise Memorization through Data Splitting
We approach the problem of improving robustness of deep learning algorithms in the presence of label noise. Building upon existing label correction and co-teaching methods, we propose a novel training procedure to mitigate the memorization of noisy labels, called CrossSplit, which uses a pair of neural networks trained on two disjoint parts of the labelled dataset. CrossSplit combines two main ingredients: (i) Cross-split label correction. The idea is that, since the model trained on one part of the data cannot memorize example-label pairs from the other part, the training labels presented to each network can be smoothly adjusted by using the predictions of its peer network; (ii) Cross-split semi-supervised training. A network trained on one part of the data also uses the unlabeled inputs of the other part. Extensive experiments on CIFAR-10, CIFAR-100, Tiny-ImageNet and mini-WebVision datasets demonstrate that our method can outperform the current state-of-the-art in a wide range of noise ratios.
Non-Attentive Tacotron: Robust and Controllable Neural TTS Synthesis Including Unsupervised Duration Modeling
This paper presents Non-Attentive Tacotron based on the Tacotron 2 text-to-speech model, replacing the attention mechanism with an explicit duration predictor. This improves robustness significantly as measured by unaligned duration ratio and word deletion rate, two metrics introduced in this paper for large-scale robustness evaluation using a pre-trained speech recognition model. With the use of Gaussian upsampling, Non-Attentive Tacotron achieves a 5-scale mean opinion score for naturalness of 4.41, slightly outperforming Tacotron 2. The duration predictor enables both utterance-wide and per-phoneme control of duration at inference time. When accurate target durations are scarce or unavailable in the training data, we propose a method using a fine-grained variational auto-encoder to train the duration predictor in a semi-supervised or unsupervised manner, with results almost as good as supervised training.
The VoxCeleb Speaker Recognition Challenge: A Retrospective
The VoxCeleb Speaker Recognition Challenges (VoxSRC) were a series of challenges and workshops that ran annually from 2019 to 2023. The challenges primarily evaluated the tasks of speaker recognition and diarisation under various settings including: closed and open training data; as well as supervised, self-supervised, and semi-supervised training for domain adaptation. The challenges also provided publicly available training and evaluation datasets for each task and setting, with new test sets released each year. In this paper, we provide a review of these challenges that covers: what they explored; the methods developed by the challenge participants and how these evolved; and also the current state of the field for speaker verification and diarisation. We chart the progress in performance over the five installments of the challenge on a common evaluation dataset and provide a detailed analysis of how each year's special focus affected participants' performance. This paper is aimed both at researchers who want an overview of the speaker recognition and diarisation field, and also at challenge organisers who want to benefit from the successes and avoid the mistakes of the VoxSRC challenges. We end with a discussion of the current strengths of the field and open challenges. Project page : https://mm.kaist.ac.kr/datasets/voxceleb/voxsrc/workshop.html
GigaSpeech: An Evolving, Multi-domain ASR Corpus with 10,000 Hours of Transcribed Audio
This paper introduces GigaSpeech, an evolving, multi-domain English speech recognition corpus with 10,000 hours of high quality labeled audio suitable for supervised training, and 40,000 hours of total audio suitable for semi-supervised and unsupervised training. Around 40,000 hours of transcribed audio is first collected from audiobooks, podcasts and YouTube, covering both read and spontaneous speaking styles, and a variety of topics, such as arts, science, sports, etc. A new forced alignment and segmentation pipeline is proposed to create sentence segments suitable for speech recognition training, and to filter out segments with low-quality transcription. For system training, GigaSpeech provides five subsets of different sizes, 10h, 250h, 1000h, 2500h, and 10000h. For our 10,000-hour XL training subset, we cap the word error rate at 4% during the filtering/validation stage, and for all our other smaller training subsets, we cap it at 0%. The DEV and TEST evaluation sets, on the other hand, are re-processed by professional human transcribers to ensure high transcription quality. Baseline systems are provided for popular speech recognition toolkits, namely Athena, ESPnet, Kaldi and Pika.
Robust and Label-Efficient Deep Waste Detection
Effective waste sorting is critical for sustainable recycling, yet AI research in this domain continues to lag behind commercial systems due to limited datasets and reliance on legacy object detectors. In this work, we advance AI-driven waste detection by establishing strong baselines and introducing an ensemble-based semi-supervised learning framework. We first benchmark state-of-the-art Open-Vocabulary Object Detection (OVOD) models on the real-world ZeroWaste dataset, demonstrating that while class-only prompts perform poorly, LLM-optimized prompts significantly enhance zero-shot accuracy. Next, to address domain-specific limitations, we fine-tune modern transformer-based detectors, achieving a new baseline of 51.6 mAP. We then propose a soft pseudo-labeling strategy that fuses ensemble predictions using spatial and consensus-aware weighting, enabling robust semi-supervised training. Applied to the unlabeled ZeroWaste-s subset, our pseudo-annotations achieve performance gains that surpass fully supervised training, underscoring the effectiveness of scalable annotation pipelines. Our work contributes to the research community by establishing rigorous baselines, introducing a robust ensemble-based pseudo-labeling pipeline, generating high-quality annotations for the unlabeled ZeroWaste-s subset, and systematically evaluating OVOD models under real-world waste sorting conditions. Our code is available at: https://github.com/h-abid97/robust-waste-detection.
Semi-Supervised Knowledge-Grounded Pre-training for Task-Oriented Dialog Systems
Recent advances in neural approaches greatly improve task-oriented dialogue (TOD) systems which assist users to accomplish their goals. However, such systems rely on costly manually labeled dialogs which are not available in practical scenarios. In this paper, we present our models for Track 2 of the SereTOD 2022 challenge, which is the first challenge of building semi-supervised and reinforced TOD systems on a large-scale real-world Chinese TOD dataset MobileCS. We build a knowledge-grounded dialog model to formulate dialog history and local KB as input and predict the system response. And we perform semi-supervised pre-training both on the labeled and unlabeled data. Our system achieves the first place both in the automatic evaluation and human interaction, especially with higher BLEU (+7.64) and Success (+13.6\%) than the second place.
A Semi-Self-Supervised Approach for Dense-Pattern Video Object Segmentation
Video object segmentation (VOS) -- predicting pixel-level regions for objects within each frame of a video -- is particularly challenging in agricultural scenarios, where videos of crops include hundreds of small, dense, and occluded objects (stems, leaves, flowers, pods) that sway and move unpredictably in the wind. Supervised training is the state-of-the-art for VOS, but it requires large, pixel-accurate, human-annotated videos, which are costly to produce for videos with many densely packed objects in each frame. To address these challenges, we proposed a semi-self-supervised spatiotemporal approach for dense-VOS (DVOS) using a diffusion-based method through multi-task (reconstruction and segmentation) learning. We train the model first with synthetic data that mimics the camera and object motion of real videos and then with pseudo-labeled videos. We evaluate our DVOS method for wheat head segmentation from a diverse set of videos (handheld, drone-captured, different field locations, and different growth stages -- spanning from Boot-stage to Wheat-mature and Harvest-ready). Despite using only a few manually annotated video frames, the proposed approach yielded a high-performing model, achieving a Dice score of 0.79 when tested on a drone-captured external test set. While our method was evaluated on wheat head segmentation, it can be extended to other crops and domains, such as crowd analysis or microscopic image analysis.
Navigating Data Heterogeneity in Federated Learning: A Semi-Supervised Approach for Object Detection
Federated Learning (FL) has emerged as a potent framework for training models across distributed data sources while maintaining data privacy. Nevertheless, it faces challenges with limited high-quality labels and non-IID client data, particularly in applications like autonomous driving. To address these hurdles, we navigate the uncharted waters of Semi-Supervised Federated Object Detection (SSFOD). We present a pioneering SSFOD framework, designed for scenarios where labeled data reside only at the server while clients possess unlabeled data. Notably, our method represents the inaugural implementation of SSFOD for clients with 0% labeled non-IID data, a stark contrast to previous studies that maintain some subset of labels at each client. We propose FedSTO, a two-stage strategy encompassing Selective Training followed by Orthogonally enhanced full-parameter training, to effectively address data shift (e.g. weather conditions) between server and clients. Our contributions include selectively refining the backbone of the detector to avert overfitting, orthogonality regularization to boost representation divergence, and local EMA-driven pseudo label assignment to yield high-quality pseudo labels. Extensive validation on prominent autonomous driving datasets (BDD100K, Cityscapes, and SODA10M) attests to the efficacy of our approach, demonstrating state-of-the-art results. Remarkably, FedSTO, using just 20-30% of labels, performs nearly as well as fully-supervised centralized training methods.
Probabilistic Hyper-Graphs using Multiple Randomly Masked Autoencoders for Semi-supervised Multi-modal Multi-task Learning
The computer vision domain has greatly benefited from an abundance of data across many modalities to improve on various visual tasks. Recently, there has been a lot of focus on self-supervised pre-training methods through Masked Autoencoders (MAE) he2022masked,bachmann2022multimae, usually used as a first step before optimizing for a downstream task, such as classification or regression. This is very useful as it doesn't require any manually labeled data. In this work, we introduce Probabilistic Hyper-Graphs using Masked Autoencoders (PHG-MAE): a novel model that unifies the classical work on neural graphs leordeanu2021semi with the modern approach of masked autoencoders under a common theoretical framework. Through random masking of entire modalities, not just patches, the model samples from the distribution of hyper-edges on each forward pass. Additionally, the model adapts the standard MAE algorithm by combining pre-training and fine-tuning into a single training loop. Moreover, our approach enables the creation of inference-time ensembles which, through aggregation, boost the final prediction performance and consistency. Lastly, we show that we can apply knowledge distillation on top of the ensembles with little loss in performance, even with models that have fewer than 1M parameters. While our work mostly focuses on outdoor UAV scenes that contain multiple world interpretations and modalities, the same steps can be followed in other similar domains, such as autonomous driving or indoor robotics. In order to streamline the process of integrating external pre-trained experts for computer vision multi-modal multi-task learning (MTL) scenarios, we developed a data-pipeline software. Using this tool, we have created and released a fully-automated extension of the Dronescapes dataset. All the technical details, code and reproduction steps are publicly released.
MOST: Multiple Object localization with Self-supervised Transformers for object discovery
We tackle the challenging task of unsupervised object localization in this work. Recently, transformers trained with self-supervised learning have been shown to exhibit object localization properties without being trained for this task. In this work, we present Multiple Object localization with Self-supervised Transformers (MOST) that uses features of transformers trained using self-supervised learning to localize multiple objects in real world images. MOST analyzes the similarity maps of the features using box counting; a fractal analysis tool to identify tokens lying on foreground patches. The identified tokens are then clustered together, and tokens of each cluster are used to generate bounding boxes on foreground regions. Unlike recent state-of-the-art object localization methods, MOST can localize multiple objects per image and outperforms SOTA algorithms on several object localization and discovery benchmarks on PASCAL-VOC 07, 12 and COCO20k datasets. Additionally, we show that MOST can be used for self-supervised pre-training of object detectors, and yields consistent improvements on fully, semi-supervised object detection and unsupervised region proposal generation.
Enhancing Adversarial Robustness in Low-Label Regime via Adaptively Weighted Regularization and Knowledge Distillation
Adversarial robustness is a research area that has recently received a lot of attention in the quest for trustworthy artificial intelligence. However, recent works on adversarial robustness have focused on supervised learning where it is assumed that labeled data is plentiful. In this paper, we investigate semi-supervised adversarial training where labeled data is scarce. We derive two upper bounds for the robust risk and propose a regularization term for unlabeled data motivated by these two upper bounds. Then, we develop a semi-supervised adversarial training algorithm that combines the proposed regularization term with knowledge distillation using a semi-supervised teacher (i.e., a teacher model trained using a semi-supervised learning algorithm). Our experiments show that our proposed algorithm achieves state-of-the-art performance with significant margins compared to existing algorithms. In particular, compared to supervised learning algorithms, performance of our proposed algorithm is not much worse even when the amount of labeled data is very small. For example, our algorithm with only 8\% labeled data is comparable to supervised adversarial training algorithms that use all labeled data, both in terms of standard and robust accuracies on CIFAR-10.
Cycle-Consistency Learning for Captioning and Grounding
We present that visual grounding and image captioning, which perform as two mutually inverse processes, can be bridged together for collaborative training by careful designs. By consolidating this idea, we introduce CyCo, a cyclic-consistent learning framework to ameliorate the independent training pipelines of visual grounding and image captioning. The proposed framework (1) allows the semi-weakly supervised training of visual grounding; (2) improves the performance of fully supervised visual grounding; (3) yields a general captioning model that can describe arbitrary image regions. Extensive experiments show that our fully supervised grounding model achieves state-of-the-art performance, and the semi-weakly supervised one also exhibits competitive performance compared to the fully supervised counterparts. Our image captioning model has the capability to freely describe image regions and meanwhile shows impressive performance on prevalent captioning benchmarks.
Unified Speech Recognition: A Single Model for Auditory, Visual, and Audiovisual Inputs
Research in auditory, visual, and audiovisual speech recognition (ASR, VSR, and AVSR, respectively) has traditionally been conducted independently. Even recent self-supervised studies addressing two or all three tasks simultaneously tend to yield separate models, leading to disjoint inference pipelines with increased memory requirements and redundancies. This paper proposes unified training strategies for these systems. We demonstrate that training a single model for all three tasks enhances VSR and AVSR performance, overcoming typical optimisation challenges when training from scratch. Moreover, we introduce a greedy pseudo-labelling approach to more effectively leverage unlabelled samples, addressing shortcomings in related self-supervised methods. Finally, we develop a self-supervised pre-training method within our framework, proving its effectiveness alongside our semi-supervised approach. Despite using a single model for all tasks, our unified approach achieves state-of-the-art performance compared to recent methods on LRS3 and LRS2 for ASR, VSR, and AVSR, as well as on the newly released WildVSR dataset. Code and models are available at https://github.com/ahaliassos/usr.
Pushing the limits of raw waveform speaker recognition
In recent years, speaker recognition systems based on raw waveform inputs have received increasing attention. However, the performance of such systems are typically inferior to the state-of-the-art handcrafted feature-based counterparts, which demonstrate equal error rates under 1% on the popular VoxCeleb1 test set. This paper proposes a novel speaker recognition model based on raw waveform inputs. The model incorporates recent advances in machine learning and speaker verification, including the Res2Net backbone module and multi-layer feature aggregation. Our best model achieves an equal error rate of 0.89%, which is competitive with the state-of-the-art models based on handcrafted features, and outperforms the best model based on raw waveform inputs by a large margin. We also explore the application of the proposed model in the context of self-supervised learning framework. Our self-supervised model outperforms single phase-based existing works in this line of research. Finally, we show that self-supervised pre-training is effective for the semi-supervised scenario where we only have a small set of labelled training data, along with a larger set of unlabelled examples.
Depth Anywhere: Enhancing 360 Monocular Depth Estimation via Perspective Distillation and Unlabeled Data Augmentation
Accurately estimating depth in 360-degree imagery is crucial for virtual reality, autonomous navigation, and immersive media applications. Existing depth estimation methods designed for perspective-view imagery fail when applied to 360-degree images due to different camera projections and distortions, whereas 360-degree methods perform inferior due to the lack of labeled data pairs. We propose a new depth estimation framework that utilizes unlabeled 360-degree data effectively. Our approach uses state-of-the-art perspective depth estimation models as teacher models to generate pseudo labels through a six-face cube projection technique, enabling efficient labeling of depth in 360-degree images. This method leverages the increasing availability of large datasets. Our approach includes two main stages: offline mask generation for invalid regions and an online semi-supervised joint training regime. We tested our approach on benchmark datasets such as Matterport3D and Stanford2D3D, showing significant improvements in depth estimation accuracy, particularly in zero-shot scenarios. Our proposed training pipeline can enhance any 360 monocular depth estimator and demonstrates effective knowledge transfer across different camera projections and data types. See our project page for results: https://albert100121.github.io/Depth-Anywhere/
Rethinking the Value of Labels for Improving Class-Imbalanced Learning
Real-world data often exhibits long-tailed distributions with heavy class imbalance, posing great challenges for deep recognition models. We identify a persisting dilemma on the value of labels in the context of imbalanced learning: on the one hand, supervision from labels typically leads to better results than its unsupervised counterparts; on the other hand, heavily imbalanced data naturally incurs "label bias" in the classifier, where the decision boundary can be drastically altered by the majority classes. In this work, we systematically investigate these two facets of labels. We demonstrate, theoretically and empirically, that class-imbalanced learning can significantly benefit in both semi-supervised and self-supervised manners. Specifically, we confirm that (1) positively, imbalanced labels are valuable: given more unlabeled data, the original labels can be leveraged with the extra data to reduce label bias in a semi-supervised manner, which greatly improves the final classifier; (2) negatively however, we argue that imbalanced labels are not useful always: classifiers that are first pre-trained in a self-supervised manner consistently outperform their corresponding baselines. Extensive experiments on large-scale imbalanced datasets verify our theoretically grounded strategies, showing superior performance over previous state-of-the-arts. Our intriguing findings highlight the need to rethink the usage of imbalanced labels in realistic long-tailed tasks. Code is available at https://github.com/YyzHarry/imbalanced-semi-self.
DiffusionEngine: Diffusion Model is Scalable Data Engine for Object Detection
Data is the cornerstone of deep learning. This paper reveals that the recently developed Diffusion Model is a scalable data engine for object detection. Existing methods for scaling up detection-oriented data often require manual collection or generative models to obtain target images, followed by data augmentation and labeling to produce training pairs, which are costly, complex, or lacking diversity. To address these issues, we presentDiffusionEngine (DE), a data scaling-up engine that provides high-quality detection-oriented training pairs in a single stage. DE consists of a pre-trained diffusion model and an effective Detection-Adapter, contributing to generating scalable, diverse and generalizable detection data in a plug-and-play manner. Detection-Adapter is learned to align the implicit semantic and location knowledge in off-the-shelf diffusion models with detection-aware signals to make better bounding-box predictions. Additionally, we contribute two datasets, i.e., COCO-DE and VOC-DE, to scale up existing detection benchmarks for facilitating follow-up research. Extensive experiments demonstrate that data scaling-up via DE can achieve significant improvements in diverse scenarios, such as various detection algorithms, self-supervised pre-training, data-sparse, label-scarce, cross-domain, and semi-supervised learning. For example, when using DE with a DINO-based adapter to scale up data, mAP is improved by 3.1% on COCO, 7.6% on VOC, and 11.5% on Clipart.
SPACE-2: Tree-Structured Semi-Supervised Contrastive Pre-training for Task-Oriented Dialog Understanding
Pre-training methods with contrastive learning objectives have shown remarkable success in dialog understanding tasks. However, current contrastive learning solely considers the self-augmented dialog samples as positive samples and treats all other dialog samples as negative ones, which enforces dissimilar representations even for dialogs that are semantically related. In this paper, we propose SPACE-2, a tree-structured pre-trained conversation model, which learns dialog representations from limited labeled dialogs and large-scale unlabeled dialog corpora via semi-supervised contrastive pre-training. Concretely, we first define a general semantic tree structure (STS) to unify the inconsistent annotation schema across different dialog datasets, so that the rich structural information stored in all labeled data can be exploited. Then we propose a novel multi-view score function to increase the relevance of all possible dialogs that share similar STSs and only push away other completely different dialogs during supervised contrastive pre-training. To fully exploit unlabeled dialogs, a basic self-supervised contrastive loss is also added to refine the learned representations. Experiments show that our method can achieve new state-of-the-art results on the DialoGLUE benchmark consisting of seven datasets and four popular dialog understanding tasks. For reproducibility, we release the code and data at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/space-2.
Cross-Frequency Collaborative Training Network and Dataset for Semi-supervised First Molar Root Canal Segmentation
Root canal (RC) treatment is a highly delicate and technically complex procedure in clinical practice, heavily influenced by the clinicians' experience and subjective judgment. Deep learning has made significant advancements in the field of computer-aided diagnosis (CAD) because it can provide more objective and accurate diagnostic results. However, its application in RC treatment is still relatively rare, mainly due to the lack of public datasets in this field. To address this issue, in this paper, we established a First Molar Root Canal segmentation dataset called FMRC-2025. Additionally, to alleviate the workload of manual annotation for dentists and fully leverage the unlabeled data, we designed a Cross-Frequency Collaborative training semi-supervised learning (SSL) Network called CFC-Net. It consists of two components: (1) Cross-Frequency Collaborative Mean Teacher (CFC-MT), which introduces two specialized students (SS) and one comprehensive teacher (CT) for collaborative multi-frequency training. The CT and SS are trained on different frequency components while fully integrating multi-frequency knowledge through cross and full frequency consistency supervisions. (2) Uncertainty-guided Cross-Frequency Mix (UCF-Mix) mechanism enables the network to generate high-confidence pseudo-labels while learning to integrate multi-frequency information and maintaining the structural integrity of the targets. Extensive experiments on FMRC-2025 and three public dental datasets demonstrate that CFC-MT is effective for RC segmentation and can also exhibit strong generalizability on other dental segmentation tasks, outperforming state-of-the-art SSL medical image segmentation methods. Codes and dataset will be released.
UniVIP: A Unified Framework for Self-Supervised Visual Pre-training
Self-supervised learning (SSL) holds promise in leveraging large amounts of unlabeled data. However, the success of popular SSL methods has limited on single-centric-object images like those in ImageNet and ignores the correlation among the scene and instances, as well as the semantic difference of instances in the scene. To address the above problems, we propose a Unified Self-supervised Visual Pre-training (UniVIP), a novel self-supervised framework to learn versatile visual representations on either single-centric-object or non-iconic dataset. The framework takes into account the representation learning at three levels: 1) the similarity of scene-scene, 2) the correlation of scene-instance, 3) the discrimination of instance-instance. During the learning, we adopt the optimal transport algorithm to automatically measure the discrimination of instances. Massive experiments show that UniVIP pre-trained on non-iconic COCO achieves state-of-the-art transfer performance on a variety of downstream tasks, such as image classification, semi-supervised learning, object detection and segmentation. Furthermore, our method can also exploit single-centric-object dataset such as ImageNet and outperforms BYOL by 2.5% with the same pre-training epochs in linear probing, and surpass current self-supervised object detection methods on COCO dataset, demonstrating its universality and potential.
Robust Training of Federated Models with Extremely Label Deficiency
Federated semi-supervised learning (FSSL) has emerged as a powerful paradigm for collaboratively training machine learning models using distributed data with label deficiency. Advanced FSSL methods predominantly focus on training a single model on each client. However, this approach could lead to a discrepancy between the objective functions of labeled and unlabeled data, resulting in gradient conflicts. To alleviate gradient conflict, we propose a novel twin-model paradigm, called Twin-sight, designed to enhance mutual guidance by providing insights from different perspectives of labeled and unlabeled data. In particular, Twin-sight concurrently trains a supervised model with a supervised objective function while training an unsupervised model using an unsupervised objective function. To enhance the synergy between these two models, Twin-sight introduces a neighbourhood-preserving constraint, which encourages the preservation of the neighbourhood relationship among data features extracted by both models. Our comprehensive experiments on four benchmark datasets provide substantial evidence that Twin-sight can significantly outperform state-of-the-art methods across various experimental settings, demonstrating the efficacy of the proposed Twin-sight.
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Generative models are becoming a tool of choice for exploring the molecular space. These models learn on a large training dataset and produce novel molecular structures with similar properties. Generated structures can be utilized for virtual screening or training semi-supervised predictive models in the downstream tasks. While there are plenty of generative models, it is unclear how to compare and rank them. In this work, we introduce a benchmarking platform called Molecular Sets (MOSES) to standardize training and comparison of molecular generative models. MOSES provides a training and testing datasets, and a set of metrics to evaluate the quality and diversity of generated structures. We have implemented and compared several molecular generation models and suggest to use our results as reference points for further advancements in generative chemistry research. The platform and source code are available at https://github.com/molecularsets/moses.
End-to-End Learning of Semantic Grasping
We consider the task of semantic robotic grasping, in which a robot picks up an object of a user-specified class using only monocular images. Inspired by the two-stream hypothesis of visual reasoning, we present a semantic grasping framework that learns object detection, classification, and grasp planning in an end-to-end fashion. A "ventral stream" recognizes object class while a "dorsal stream" simultaneously interprets the geometric relationships necessary to execute successful grasps. We leverage the autonomous data collection capabilities of robots to obtain a large self-supervised dataset for training the dorsal stream, and use semi-supervised label propagation to train the ventral stream with only a modest amount of human supervision. We experimentally show that our approach improves upon grasping systems whose components are not learned end-to-end, including a baseline method that uses bounding box detection. Furthermore, we show that jointly training our model with auxiliary data consisting of non-semantic grasping data, as well as semantically labeled images without grasp actions, has the potential to substantially improve semantic grasping performance.
Semi-Supervised Semantic Segmentation using Redesigned Self-Training for White Blood Cells
Artificial Intelligence (AI) in healthcare, especially in white blood cell cancer diagnosis, is hindered by two primary challenges: the lack of large-scale labeled datasets for white blood cell (WBC) segmentation and outdated segmentation methods. These challenges inhibit the development of more accurate and modern techniques to diagnose cancer relating to white blood cells. To address the first challenge, a semi-supervised learning framework should be devised to efficiently capitalize on the scarcity of the dataset available. In this work, we address this issue by proposing a novel self-training pipeline with the incorporation of FixMatch. Self-training is a technique that utilizes the model trained on labeled data to generate pseudo-labels for the unlabeled data and then re-train on both of them. FixMatch is a consistency-regularization algorithm to enforce the model's robustness against variations in the input image. We discover that by incorporating FixMatch in the self-training pipeline, the performance improves in the majority of cases. Our performance achieved the best performance with the self-training scheme with consistency on DeepLab-V3 architecture and ResNet-50, reaching 90.69%, 87.37%, and 76.49% on Zheng 1, Zheng 2, and LISC datasets, respectively.
Towards Unbiased Training in Federated Open-world Semi-supervised Learning
Federated Semi-supervised Learning (FedSSL) has emerged as a new paradigm for allowing distributed clients to collaboratively train a machine learning model over scarce labeled data and abundant unlabeled data. However, existing works for FedSSL rely on a closed-world assumption that all local training data and global testing data are from seen classes observed in the labeled dataset. It is crucial to go one step further: adapting FL models to an open-world setting, where unseen classes exist in the unlabeled data. In this paper, we propose a novel Federatedopen-world Semi-Supervised Learning (FedoSSL) framework, which can solve the key challenge in distributed and open-world settings, i.e., the biased training process for heterogeneously distributed unseen classes. Specifically, since the advent of a certain unseen class depends on a client basis, the locally unseen classes (exist in multiple clients) are likely to receive differentiated superior aggregation effects than the globally unseen classes (exist only in one client). We adopt an uncertainty-aware suppressed loss to alleviate the biased training between locally unseen and globally unseen classes. Besides, we enable a calibration module supplementary to the global aggregation to avoid potential conflicting knowledge transfer caused by inconsistent data distribution among different clients. The proposed FedoSSL can be easily adapted to state-of-the-art FL methods, which is also validated via extensive experiments on benchmarks and real-world datasets (CIFAR-10, CIFAR-100 and CINIC-10).
Semi-supervised Semantics-guided Adversarial Training for Trajectory Prediction
Predicting the trajectories of surrounding objects is a critical task for self-driving vehicles and many other autonomous systems. Recent works demonstrate that adversarial attacks on trajectory prediction, where small crafted perturbations are introduced to history trajectories, may significantly mislead the prediction of future trajectories and induce unsafe planning. However, few works have addressed enhancing the robustness of this important safety-critical task.In this paper, we present a novel adversarial training method for trajectory prediction. Compared with typical adversarial training on image tasks, our work is challenged by more random input with rich context and a lack of class labels. To address these challenges, we propose a method based on a semi-supervised adversarial autoencoder, which models disentangled semantic features with domain knowledge and provides additional latent labels for the adversarial training. Extensive experiments with different types of attacks demonstrate that our Semisupervised Semantics-guided Adversarial Training (SSAT) method can effectively mitigate the impact of adversarial attacks by up to 73% and outperform other popular defense methods. In addition, experiments show that our method can significantly improve the system's robust generalization to unseen patterns of attacks. We believe that such semantics-guided architecture and advancement on robust generalization is an important step for developing robust prediction models and enabling safe decision-making.
Semi-Supervised Reward Modeling via Iterative Self-Training
Reward models (RM) capture the values and preferences of humans and play a central role in Reinforcement Learning with Human Feedback (RLHF) to align pretrained large language models (LLMs). Traditionally, training these models relies on extensive human-annotated preference data, which poses significant challenges in terms of scalability and cost. To overcome these limitations, we propose Semi-Supervised Reward Modeling (SSRM), an approach that enhances RM training using unlabeled data. Given an unlabeled dataset, SSRM involves three key iterative steps: pseudo-labeling unlabeled examples, selecting high-confidence examples through a confidence threshold, and supervised finetuning on the refined dataset. Across extensive experiments on various model configurations, we demonstrate that SSRM significantly improves reward models without incurring additional labeling costs. Notably, SSRM can achieve performance comparable to models trained entirely on labeled data of equivalent volumes. Overall, SSRM substantially reduces the dependency on large volumes of human-annotated data, thereby decreasing the overall cost and time involved in training effective reward models.
RCT: Random Consistency Training for Semi-supervised Sound Event Detection
Sound event detection (SED), as a core module of acoustic environmental analysis, suffers from the problem of data deficiency. The integration of semi-supervised learning (SSL) largely mitigates such problem while bringing no extra annotation budget. This paper researches on several core modules of SSL, and introduces a random consistency training (RCT) strategy. First, a self-consistency loss is proposed to fuse with the teacher-student model to stabilize the training. Second, a hard mixup data augmentation is proposed to account for the additive property of sounds. Third, a random augmentation scheme is applied to flexibly combine different types of data augmentations. Experiments show that the proposed strategy outperform other widely-used strategies.
Adversarial Training Methods for Semi-Supervised Text Classification
Adversarial training provides a means of regularizing supervised learning algorithms while virtual adversarial training is able to extend supervised learning algorithms to the semi-supervised setting. However, both methods require making small perturbations to numerous entries of the input vector, which is inappropriate for sparse high-dimensional inputs such as one-hot word representations. We extend adversarial and virtual adversarial training to the text domain by applying perturbations to the word embeddings in a recurrent neural network rather than to the original input itself. The proposed method achieves state of the art results on multiple benchmark semi-supervised and purely supervised tasks. We provide visualizations and analysis showing that the learned word embeddings have improved in quality and that while training, the model is less prone to overfitting. Code is available at https://github.com/tensorflow/models/tree/master/research/adversarial_text.
Boosting Semi-Supervised 2D Human Pose Estimation by Revisiting Data Augmentation and Consistency Training
The 2D human pose estimation is a basic visual problem. However, supervised learning of a model requires massive labeled images, which is expensive and labor-intensive. In this paper, we aim at boosting the accuracy of a pose estimator by excavating extra unlabeled images in a semi-supervised learning (SSL) way. Most previous consistency-based SSL methods strive to constraint the model to predict consistent results for differently augmented images. Following this consensus, we revisit two core aspects including advanced data augmentation methods and concise consistency training frameworks. Specifically, we heuristically dig various collaborative combinations of existing data augmentations, and discover novel superior data augmentation schemes to more effectively add noise on unlabeled samples. They can compose easy-hard augmentation pairs with larger transformation difficulty gaps, which play a crucial role in consistency-based SSL. Moreover, we propose to strongly augment unlabeled images repeatedly with diverse augmentations, generate multi-path predictions sequentially, and optimize corresponding unsupervised consistency losses using one single network. This simple and compact design is on a par with previous methods consisting of dual or triple networks. Furthermore, it can also be integrated with multiple networks to produce better performance. Comparing to state-of-the-art SSL approaches, our method brings substantial improvements on public datasets. Code is released for academic use in https://github.com/hnuzhy/MultiAugs.
DisCo: Distilled Student Models Co-training for Semi-supervised Text Mining
Many text mining models are constructed by fine-tuning a large deep pre-trained language model (PLM) in downstream tasks. However, a significant challenge is maintaining performance when we use a lightweight model with limited labeled samples. We present DisCo, a semi-supervised learning (SSL) framework for fine-tuning a cohort of small student models generated from a large PLM using knowledge distillation. Our key insight is to share complementary knowledge among distilled student cohorts to promote their SSL effectiveness. DisCo employs a novel co-training technique to optimize multiple small student models by promoting knowledge sharing among students under diversified views: model views produced by different distillation strategies and data views produced by various input augmentations. We evaluate DisCo on both semi-supervised text classification and extractive summarization tasks. Experimental results show that DisCo can produce student models that are 7.6 times smaller and 4.8 times faster in inference than the baseline PLMs while maintaining comparable performance. We also show that DisCo-generated student models outperform the similar-sized models elaborately tuned in distinct tasks.
Training Ensembles with Inliers and Outliers for Semi-supervised Active Learning
Deep active learning in the presence of outlier examples poses a realistic yet challenging scenario. Acquiring unlabeled data for annotation requires a delicate balance between avoiding outliers to conserve the annotation budget and prioritizing useful inlier examples for effective training. In this work, we present an approach that leverages three highly synergistic components, which are identified as key ingredients: joint classifier training with inliers and outliers, semi-supervised learning through pseudo-labeling, and model ensembling. Our work demonstrates that ensembling significantly enhances the accuracy of pseudo-labeling and improves the quality of data acquisition. By enabling semi-supervision through the joint training process, where outliers are properly handled, we observe a substantial boost in classifier accuracy through the use of all available unlabeled examples. Notably, we reveal that the integration of joint training renders explicit outlier detection unnecessary; a conventional component for acquisition in prior work. The three key components align seamlessly with numerous existing approaches. Through empirical evaluations, we showcase that their combined use leads to a performance increase. Remarkably, despite its simplicity, our proposed approach outperforms all other methods in terms of performance. Code: https://github.com/vladan-stojnic/active-outliers
Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning
We propose a new regularization method based on virtual adversarial loss: a new measure of local smoothness of the conditional label distribution given input. Virtual adversarial loss is defined as the robustness of the conditional label distribution around each input data point against local perturbation. Unlike adversarial training, our method defines the adversarial direction without label information and is hence applicable to semi-supervised learning. Because the directions in which we smooth the model are only "virtually" adversarial, we call our method virtual adversarial training (VAT). The computational cost of VAT is relatively low. For neural networks, the approximated gradient of virtual adversarial loss can be computed with no more than two pairs of forward- and back-propagations. In our experiments, we applied VAT to supervised and semi-supervised learning tasks on multiple benchmark datasets. With a simple enhancement of the algorithm based on the entropy minimization principle, our VAT achieves state-of-the-art performance for semi-supervised learning tasks on SVHN and CIFAR-10.
DS6, Deformation-aware Semi-supervised Learning: Application to Small Vessel Segmentation with Noisy Training Data
Blood vessels of the brain provide the human brain with the required nutrients and oxygen. As a vulnerable part of the cerebral blood supply, pathology of small vessels can cause serious problems such as Cerebral Small Vessel Diseases (CSVD). It has also been shown that CSVD is related to neurodegeneration, such as Alzheimer's disease. With the advancement of 7 Tesla MRI systems, higher spatial image resolution can be achieved, enabling the depiction of very small vessels in the brain. Non-Deep Learning-based approaches for vessel segmentation, e.g., Frangi's vessel enhancement with subsequent thresholding, are capable of segmenting medium to large vessels but often fail to segment small vessels. The sensitivity of these methods to small vessels can be increased by extensive parameter tuning or by manual corrections, albeit making them time-consuming, laborious, and not feasible for larger datasets. This paper proposes a deep learning architecture to automatically segment small vessels in 7 Tesla 3D Time-of-Flight (ToF) Magnetic Resonance Angiography (MRA) data. The algorithm was trained and evaluated on a small imperfect semi-automatically segmented dataset of only 11 subjects; using six for training, two for validation, and three for testing. The deep learning model based on U-Net Multi-Scale Supervision was trained using the training subset and was made equivariant to elastic deformations in a self-supervised manner using deformation-aware learning to improve the generalisation performance. The proposed technique was evaluated quantitatively and qualitatively against the test set and achieved a Dice score of 80.44 pm 0.83. Furthermore, the result of the proposed method was compared against a selected manually segmented region (62.07 resultant Dice) and has shown a considerable improvement (18.98\%) with deformation-aware learning.
Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels
The crux of semi-supervised semantic segmentation is to assign adequate pseudo-labels to the pixels of unlabeled images. A common practice is to select the highly confident predictions as the pseudo ground-truth, but it leads to a problem that most pixels may be left unused due to their unreliability. We argue that every pixel matters to the model training, even its prediction is ambiguous. Intuitively, an unreliable prediction may get confused among the top classes (i.e., those with the highest probabilities), however, it should be confident about the pixel not belonging to the remaining classes. Hence, such a pixel can be convincingly treated as a negative sample to those most unlikely categories. Based on this insight, we develop an effective pipeline to make sufficient use of unlabeled data. Concretely, we separate reliable and unreliable pixels via the entropy of predictions, push each unreliable pixel to a category-wise queue that consists of negative samples, and manage to train the model with all candidate pixels. Considering the training evolution, where the prediction becomes more and more accurate, we adaptively adjust the threshold for the reliable-unreliable partition. Experimental results on various benchmarks and training settings demonstrate the superiority of our approach over the state-of-the-art alternatives.
Semi-supervised URL Segmentation with Recurrent Neural Networks Pre-trained on Knowledge Graph Entities
Breaking domain names such as openresearch into component words open and research is important for applications like Text-to-Speech synthesis and web search. We link this problem to the classic problem of Chinese word segmentation and show the effectiveness of a tagging model based on Recurrent Neural Networks (RNNs) using characters as input. To compensate for the lack of training data, we propose a pre-training method on concatenated entity names in a large knowledge database. Pre-training improves the model by 33% and brings the sequence accuracy to 85%.
Investigating Semi-Supervised Learning Algorithms in Text Datasets
Using large training datasets enhances the generalization capabilities of neural networks. Semi-supervised learning (SSL) is useful when there are few labeled data and a lot of unlabeled data. SSL methods that use data augmentation are most successful for image datasets. In contrast, texts do not have consistent augmentation methods as images. Consequently, methods that use augmentation are not as effective in text data as they are in image data. In this study, we compared SSL algorithms that do not require augmentation; these are self-training, co-training, tri-training, and tri-training with disagreement. In the experiments, we used 4 different text datasets for different tasks. We examined the algorithms from a variety of perspectives by asking experiment questions and suggested several improvements. Among the algorithms, tri-training with disagreement showed the closest performance to the Oracle; however, performance gap shows that new semi-supervised algorithms or improvements in existing methods are needed.
Semi-Supervised Low-Resource Style Transfer of Indonesian Informal to Formal Language with Iterative Forward-Translation
In its daily use, the Indonesian language is riddled with informality, that is, deviations from the standard in terms of vocabulary, spelling, and word order. On the other hand, current available Indonesian NLP models are typically developed with the standard Indonesian in mind. In this work, we address a style-transfer from informal to formal Indonesian as a low-resource machine translation problem. We build a new dataset of parallel sentences of informal Indonesian and its formal counterpart. We benchmark several strategies to perform style transfer from informal to formal Indonesian. We also explore augmenting the training set with artificial forward-translated data. Since we are dealing with an extremely low-resource setting, we find that a phrase-based machine translation approach outperforms the Transformer-based approach. Alternatively, a pre-trained GPT-2 fined-tuned to this task performed equally well but costs more computational resource. Our findings show a promising step towards leveraging machine translation models for style transfer. Our code and data are available in https://github.com/haryoa/stif-indonesia
Semi-Supervised Self-Learning Enhanced Music Emotion Recognition
Music emotion recognition (MER) aims to identify the emotions conveyed in a given musical piece. But currently in the field of MER, the available public datasets have limited sample sizes. Recently, segment-based methods for emotion-related tasks have been proposed, which train backbone networks on shorter segments instead of entire audio clips, thereby naturally augmenting training samples without requiring additional resources. Then, the predicted segment-level results are aggregated to obtain the entire song prediction. The most commonly used method is that segment inherits the label of the clip containing it, but music emotion is not constant during the whole clip. Doing so will introduce label noise and make the training overfit easily. To handle the noisy label issue, we propose a semi-supervised self-learning (SSSL) method, which can differentiate between samples with correct and incorrect labels in a self-learning manner, thus effectively utilizing the augmented segment-level data. Experiments on three public emotional datasets demonstrate that the proposed method can achieve better or comparable performance.
Incremental Semi-supervised Federated Learning for Health Inference via Mobile Sensing
Mobile sensing appears as a promising solution for health inference problem (e.g., influenza-like symptom recognition) by leveraging diverse smart sensors to capture fine-grained information about human behaviors and ambient contexts. Centralized training of machine learning models can place mobile users' sensitive information under privacy risks due to data breach and misexploitation. Federated Learning (FL) enables mobile devices to collaboratively learn global models without the exposure of local private data. However, there are challenges of on-device FL deployment using mobile sensing: 1) long-term and continuously collected mobile sensing data may exhibit domain shifts as sensing objects (e.g. humans) have varying behaviors as a result of internal and/or external stimulus; 2) model retraining using all available data may increase computation and memory burden; and 3) the sparsity of annotated crowd-sourced data causes supervised FL to lack robustness. In this work, we propose FedMobile, an incremental semi-supervised federated learning algorithm, to train models semi-supervisedly and incrementally in a decentralized online fashion. We evaluate FedMobile using a real-world mobile sensing dataset for influenza-like symptom recognition. Our empirical results show that FedMobile-trained models achieve the best results in comparison to the selected baseline methods.
Dense Learning based Semi-Supervised Object Detection
Semi-supervised object detection (SSOD) aims to facilitate the training and deployment of object detectors with the help of a large amount of unlabeled data. Though various self-training based and consistency-regularization based SSOD methods have been proposed, most of them are anchor-based detectors, ignoring the fact that in many real-world applications anchor-free detectors are more demanded. In this paper, we intend to bridge this gap and propose a DenSe Learning (DSL) based anchor-free SSOD algorithm. Specifically, we achieve this goal by introducing several novel techniques, including an Adaptive Filtering strategy for assigning multi-level and accurate dense pixel-wise pseudo-labels, an Aggregated Teacher for producing stable and precise pseudo-labels, and an uncertainty-consistency-regularization term among scales and shuffled patches for improving the generalization capability of the detector. Extensive experiments are conducted on MS-COCO and PASCAL-VOC, and the results show that our proposed DSL method records new state-of-the-art SSOD performance, surpassing existing methods by a large margin. Codes can be found at blue{https://github.com/chenbinghui1/DSL}.
Translation Consistent Semi-supervised Segmentation for 3D Medical Images
3D medical image segmentation methods have been successful, but their dependence on large amounts of voxel-level annotated data is a disadvantage that needs to be addressed given the high cost to obtain such annotation. Semi-supervised learning (SSL) solve this issue by training models with a large unlabelled and a small labelled dataset. The most successful SSL approaches are based on consistency learning that minimises the distance between model responses obtained from perturbed views of the unlabelled data. These perturbations usually keep the spatial input context between views fairly consistent, which may cause the model to learn segmentation patterns from the spatial input contexts instead of the segmented objects. In this paper, we introduce the Translation Consistent Co-training (TraCoCo) which is a consistency learning SSL method that perturbs the input data views by varying their spatial input context, allowing the model to learn segmentation patterns from visual objects. Furthermore, we propose the replacement of the commonly used mean squared error (MSE) semi-supervised loss by a new Cross-model confident Binary Cross entropy (CBC) loss, which improves training convergence and keeps the robustness to co-training pseudo-labelling mistakes. We also extend CutMix augmentation to 3D SSL to further improve generalisation. Our TraCoCo shows state-of-the-art results for the Left Atrium (LA) and Brain Tumor Segmentation (BRaTS19) datasets with different backbones. Our code is available at https://github.com/yyliu01/TraCoCo.
MixCycle: Mixup Assisted Semi-Supervised 3D Single Object Tracking with Cycle Consistency
3D single object tracking (SOT) is an indispensable part of automated driving. Existing approaches rely heavily on large, densely labeled datasets. However, annotating point clouds is both costly and time-consuming. Inspired by the great success of cycle tracking in unsupervised 2D SOT, we introduce the first semi-supervised approach to 3D SOT. Specifically, we introduce two cycle-consistency strategies for supervision: 1) Self tracking cycles, which leverage labels to help the model converge better in the early stages of training; 2) forward-backward cycles, which strengthen the tracker's robustness to motion variations and the template noise caused by the template update strategy. Furthermore, we propose a data augmentation strategy named SOTMixup to improve the tracker's robustness to point cloud diversity. SOTMixup generates training samples by sampling points in two point clouds with a mixing rate and assigns a reasonable loss weight for training according to the mixing rate. The resulting MixCycle approach generalizes to appearance matching-based trackers. On the KITTI benchmark, based on the P2B tracker, MixCycle trained with 10% labels outperforms P2B trained with 100% labels, and achieves a 28.4% precision improvement when using 1% labels. Our code will be released at https://github.com/Mumuqiao/MixCycle.
Diverse Cotraining Makes Strong Semi-Supervised Segmentor
Deep co-training has been introduced to semi-supervised segmentation and achieves impressive results, yet few studies have explored the working mechanism behind it. In this work, we revisit the core assumption that supports co-training: multiple compatible and conditionally independent views. By theoretically deriving the generalization upper bound, we prove the prediction similarity between two models negatively impacts the model's generalization ability. However, most current co-training models are tightly coupled together and violate this assumption. Such coupling leads to the homogenization of networks and confirmation bias which consequently limits the performance. To this end, we explore different dimensions of co-training and systematically increase the diversity from the aspects of input domains, different augmentations and model architectures to counteract homogenization. Our Diverse Co-training outperforms the state-of-the-art (SOTA) methods by a large margin across different evaluation protocols on the Pascal and Cityscapes. For example. we achieve the best mIoU of 76.2%, 77.7% and 80.2% on Pascal with only 92, 183 and 366 labeled images, surpassing the previous best results by more than 5%.
SemiReward: A General Reward Model for Semi-supervised Learning
Semi-supervised learning (SSL) has witnessed great progress with various improvements in the self-training framework with pseudo labeling. The main challenge is how to distinguish high-quality pseudo labels against the confirmation bias. However, existing pseudo-label selection strategies are limited to pre-defined schemes or complex hand-crafted policies specially designed for classification, failing to achieve high-quality labels, fast convergence, and task versatility simultaneously. To these ends, we propose a Semi-supervised Reward framework (SemiReward) that predicts reward scores to evaluate and filter out high-quality pseudo labels, which is pluggable to mainstream SSL methods in wide task types and scenarios. To mitigate confirmation bias, SemiReward is trained online in two stages with a generator model and subsampling strategy. With classification and regression tasks on 13 standard SSL benchmarks across three modalities, extensive experiments verify that SemiReward achieves significant performance gains and faster convergence speeds upon Pseudo Label, FlexMatch, and Free/SoftMatch. Code and models are available at https://github.com/Westlake-AI/SemiReward.
Diffusion Models and Semi-Supervised Learners Benefit Mutually with Few Labels
In an effort to further advance semi-supervised generative and classification tasks, we propose a simple yet effective training strategy called dual pseudo training (DPT), built upon strong semi-supervised learners and diffusion models. DPT operates in three stages: training a classifier on partially labeled data to predict pseudo-labels; training a conditional generative model using these pseudo-labels to generate pseudo images; and retraining the classifier with a mix of real and pseudo images. Empirically, DPT consistently achieves SOTA performance of semi-supervised generation and classification across various settings. In particular, with one or two labels per class, DPT achieves a Fr\'echet Inception Distance (FID) score of 3.08 or 2.52 on ImageNet 256x256. Besides, DPT outperforms competitive semi-supervised baselines substantially on ImageNet classification tasks, achieving top-1 accuracies of 59.0 (+2.8), 69.5 (+3.0), and 74.4 (+2.0) with one, two, or five labels per class, respectively. Notably, our results demonstrate that diffusion can generate realistic images with only a few labels (e.g., <0.1%) and generative augmentation remains viable for semi-supervised classification. Our code is available at https://github.com/ML-GSAI/DPT.
The Perils of Learning From Unlabeled Data: Backdoor Attacks on Semi-supervised Learning
Semi-supervised machine learning (SSL) is gaining popularity as it reduces the cost of training ML models. It does so by using very small amounts of (expensive, well-inspected) labeled data and large amounts of (cheap, non-inspected) unlabeled data. SSL has shown comparable or even superior performances compared to conventional fully-supervised ML techniques. In this paper, we show that the key feature of SSL that it can learn from (non-inspected) unlabeled data exposes SSL to strong poisoning attacks. In fact, we argue that, due to its reliance on non-inspected unlabeled data, poisoning is a much more severe problem in SSL than in conventional fully-supervised ML. Specifically, we design a backdoor poisoning attack on SSL that can be conducted by a weak adversary with no knowledge of target SSL pipeline. This is unlike prior poisoning attacks in fully-supervised settings that assume strong adversaries with practically-unrealistic capabilities. We show that by poisoning only 0.2% of the unlabeled training data, our attack can cause misclassification of more than 80% of test inputs (when they contain the adversary's backdoor trigger). Our attacks remain effective across twenty combinations of benchmark datasets and SSL algorithms, and even circumvent the state-of-the-art defenses against backdoor attacks. Our work raises significant concerns about the practical utility of existing SSL algorithms.
SemiOccam: A Robust Semi-Supervised Image Recognition Network Using Sparse Labels
We present SemiOccam, an image recognition network that leverages semi-supervised learning in a highly efficient manner. Existing works often rely on complex training techniques and architectures, requiring hundreds of GPU hours for training, while their generalization ability when dealing with extremely limited labeled data remains to be improved. To address these limitations, we construct a hierarchical mixture density classification decision mechanism by optimizing mutual information between feature representations and target classes, compressing redundant information while retaining crucial discriminative components. Experimental results demonstrate that our method achieves state-of-the-art performance on various datasets when using negligible labeled samples, and its simple architecture keeps training time to minute-level. Notably, this paper reveals a long-overlooked data leakage issue in the STL-10 dataset for semi-supervised learning tasks and removes duplicates to ensure the reliability of experimental results. We also release the deduplicated CleanSTL-10 dataset to facilitate fair and reliable research in future semi-supervised learning. Code available at https://github.com/Shu1L0n9/SemiOccam.
Semi-supervised Learning for Code-Switching ASR with Large Language Model Filter
Code-switching (CS) phenomenon occurs when words or phrases from different languages are alternated in a single sentence. Due to data scarcity, building an effective CS Automatic Speech Recognition (ASR) system remains challenging. In this paper, we propose to enhance CS-ASR systems by utilizing rich unsupervised monolingual speech data within a semi-supervised learning framework, particularly when access to CS data is limited. To achieve this, we establish a general paradigm for applying noisy student training (NST) to the CS-ASR task. Specifically, we introduce the LLM-Filter, which leverages well-designed prompt templates to activate the correction capability of large language models (LLMs) for monolingual data selection and pseudo-labels refinement during NST. Our experiments on the supervised ASRU-CS and unsupervised AISHELL-2 and LibriSpeech datasets show that our method not only achieves significant improvements over supervised and semi-supervised learning baselines for the CS task, but also attains better performance compared with the fully-supervised oracle upper-bound on the CS English part. Additionally, we further investigate the influence of accent on AESRC dataset and demonstrate that our method can get achieve additional benefits when the monolingual data contains relevant linguistic characteristic.
Semi-Supervised Learning in the Few-Shot Zero-Shot Scenario
Semi-Supervised Learning (SSL) leverages both labeled and unlabeled data to improve model performance. Traditional SSL methods assume that labeled and unlabeled data share the same label space. However, in real-world applications, especially when the labeled training set is small, there may be classes that are missing from the labeled set. Existing frameworks aim to either reject all unseen classes (open-set SSL) or to discover unseen classes by partitioning an unlabeled set during training (open-world SSL). In our work, we construct a classifier for points from both seen and unseen classes. Our approach is based on extending an existing SSL method, such as FlexMatch, by incorporating an additional entropy loss. This enhancement allows our method to improve the performance of any existing SSL method in the classification of both seen and unseen classes. We demonstrate large improvement gains over state-of-the-art SSL, open-set SSL, and open-world SSL methods, on two benchmark image classification data sets, CIFAR-100 and STL-10. The gains are most pronounced when the labeled data is severely limited (1-25 labeled examples per class).
Improving Semi-Supervised Semantic Segmentation with Dual-Level Siamese Structure Network
Semi-supervised semantic segmentation (SSS) is an important task that utilizes both labeled and unlabeled data to reduce expenses on labeling training examples. However, the effectiveness of SSS algorithms is limited by the difficulty of fully exploiting the potential of unlabeled data. To address this, we propose a dual-level Siamese structure network (DSSN) for pixel-wise contrastive learning. By aligning positive pairs with a pixel-wise contrastive loss using strong augmented views in both low-level image space and high-level feature space, the proposed DSSN is designed to maximize the utilization of available unlabeled data. Additionally, we introduce a novel class-aware pseudo-label selection strategy for weak-to-strong supervision, which addresses the limitations of most existing methods that do not perform selection or apply a predefined threshold for all classes. Specifically, our strategy selects the top high-confidence prediction of the weak view for each class to generate pseudo labels that supervise the strong augmented views. This strategy is capable of taking into account the class imbalance and improving the performance of long-tailed classes. Our proposed method achieves state-of-the-art results on two datasets, PASCAL VOC 2012 and Cityscapes, outperforming other SSS algorithms by a significant margin.
End-to-End Semi-Supervised Object Detection with Soft Teacher
This paper presents an end-to-end semi-supervised object detection approach, in contrast to previous more complex multi-stage methods. The end-to-end training gradually improves pseudo label qualities during the curriculum, and the more and more accurate pseudo labels in turn benefit object detection training. We also propose two simple yet effective techniques within this framework: a soft teacher mechanism where the classification loss of each unlabeled bounding box is weighed by the classification score produced by the teacher network; a box jittering approach to select reliable pseudo boxes for the learning of box regression. On the COCO benchmark, the proposed approach outperforms previous methods by a large margin under various labeling ratios, i.e. 1\%, 5\% and 10\%. Moreover, our approach proves to perform also well when the amount of labeled data is relatively large. For example, it can improve a 40.9 mAP baseline detector trained using the full COCO training set by +3.6 mAP, reaching 44.5 mAP, by leveraging the 123K unlabeled images of COCO. On the state-of-the-art Swin Transformer based object detector (58.9 mAP on test-dev), it can still significantly improve the detection accuracy by +1.5 mAP, reaching 60.4 mAP, and improve the instance segmentation accuracy by +1.2 mAP, reaching 52.4 mAP. Further incorporating with the Object365 pre-trained model, the detection accuracy reaches 61.3 mAP and the instance segmentation accuracy reaches 53.0 mAP, pushing the new state-of-the-art.
Large-Scale Self- and Semi-Supervised Learning for Speech Translation
In this paper, we improve speech translation (ST) through effectively leveraging large quantities of unlabeled speech and text data in different and complementary ways. We explore both pretraining and self-training by using the large Libri-Light speech audio corpus and language modeling with CommonCrawl. Our experiments improve over the previous state of the art by 2.6 BLEU on average on all four considered CoVoST 2 language pairs via a simple recipe of combining wav2vec 2.0 pretraining, a single iteration of self-training and decoding with a language model. Different to existing work, our approach does not leverage any other supervision than ST data. Code and models will be publicly released.
SemiContour: A Semi-supervised Learning Approach for Contour Detection
Supervised contour detection methods usually require many labeled training images to obtain satisfactory performance. However, a large set of annotated data might be unavailable or extremely labor intensive. In this paper, we investigate the usage of semi-supervised learning (SSL) to obtain competitive detection accuracy with very limited training data (three labeled images). Specifically, we propose a semi-supervised structured ensemble learning approach for contour detection built on structured random forests (SRF). To allow SRF to be applicable to unlabeled data, we present an effective sparse representation approach to capture inherent structure in image patches by finding a compact and discriminative low-dimensional subspace representation in an unsupervised manner, enabling the incorporation of abundant unlabeled patches with their estimated structured labels to help SRF perform better node splitting. We re-examine the role of sparsity and propose a novel and fast sparse coding algorithm to boost the overall learning efficiency. To the best of our knowledge, this is the first attempt to apply SSL for contour detection. Extensive experiments on the BSDS500 segmentation dataset and the NYU Depth dataset demonstrate the superiority of the proposed method.
Semi-Supervised Exaggeration Detection of Health Science Press Releases
Public trust in science depends on honest and factual communication of scientific papers. However, recent studies have demonstrated a tendency of news media to misrepresent scientific papers by exaggerating their findings. Given this, we present a formalization of and study into the problem of exaggeration detection in science communication. While there are an abundance of scientific papers and popular media articles written about them, very rarely do the articles include a direct link to the original paper, making data collection challenging. We address this by curating a set of labeled press release/abstract pairs from existing expert annotated studies on exaggeration in press releases of scientific papers suitable for benchmarking the performance of machine learning models on the task. Using limited data from this and previous studies on exaggeration detection in science, we introduce MT-PET, a multi-task version of Pattern Exploiting Training (PET), which leverages knowledge from complementary cloze-style QA tasks to improve few-shot learning. We demonstrate that MT-PET outperforms PET and supervised learning both when data is limited, as well as when there is an abundance of data for the main task.
Semi-Supervised Neural System for Tagging, Parsing and Lematization
This paper describes the ICS PAS system which took part in CoNLL 2018 shared task on Multilingual Parsing from Raw Text to Universal Dependencies. The system consists of jointly trained tagger, lemmatizer, and dependency parser which are based on features extracted by a biLSTM network. The system uses both fully connected and dilated convolutional neural architectures. The novelty of our approach is the use of an additional loss function, which reduces the number of cycles in the predicted dependency graphs, and the use of self-training to increase the system performance. The proposed system, i.e. ICS PAS (Warszawa), ranked 3th/4th in the official evaluation obtaining the following overall results: 73.02 (LAS), 60.25 (MLAS) and 64.44 (BLEX).
Semi-Supervised Learning Based on Reference Model for Low-resource TTS
Most previous neural text-to-speech (TTS) methods are mainly based on supervised learning methods, which means they depend on a large training dataset and hard to achieve comparable performance under low-resource conditions. To address this issue, we propose a semi-supervised learning method for neural TTS in which labeled target data is limited, which can also resolve the problem of exposure bias in the previous auto-regressive models. Specifically, we pre-train the reference model based on Fastspeech2 with much source data, fine-tuned on a limited target dataset. Meanwhile, pseudo labels generated by the original reference model are used to guide the fine-tuned model's training further, achieve a regularization effect, and reduce the overfitting of the fine-tuned model during training on the limited target data. Experimental results show that our proposed semi-supervised learning scheme with limited target data significantly improves the voice quality for test data to achieve naturalness and robustness in speech synthesis.
Learning Speaker Representation with Semi-supervised Learning approach for Speaker Profiling
Speaker profiling, which aims to estimate speaker characteristics such as age and height, has a wide range of applications inforensics, recommendation systems, etc. In this work, we propose a semisupervised learning approach to mitigate the issue of low training data for speaker profiling. This is done by utilizing external corpus with speaker information to train a better representation which can help to improve the speaker profiling systems. Specifically, besides the standard supervised learning path, the proposed framework has two more paths: (1) an unsupervised speaker representation learning path that helps to capture the speaker information; (2) a consistency training path that helps to improve the robustness of the system by enforcing it to produce similar predictions for utterances of the same speaker.The proposed approach is evaluated on the TIMIT and NISP datasets for age, height, and gender estimation, while the Librispeech is used as the unsupervised external corpus. Trained both on single-task and multi-task settings, our approach was able to achieve state-of-the-art results on age estimation on the TIMIT Test dataset with Root Mean Square Error(RMSE) of6.8 and 7.4 years and Mean Absolute Error(MAE) of 4.8 and5.0 years for male and female speakers respectively.
From Unsupervised to Semi-supervised Anomaly Detection Methods for HRRP Targets
Responding to the challenge of detecting unusual radar targets in a well identified environment, innovative anomaly and novelty detection methods keep emerging in the literature. This work aims at presenting a benchmark gathering common and recently introduced unsupervised anomaly detection (AD) methods, the results being generated using high-resolution range profiles. A semi-supervised AD (SAD) is considered to demonstrate the added value of having a few labeled anomalies to improve performances. Experiments were conducted with and without pollution of the training set with anomalous samples in order to be as close as possible to real operational contexts. The common AD methods composing our baseline will be One-Class Support Vector Machines (OC-SVM), Isolation Forest (IF), Local Outlier Factor (LOF) and a Convolutional Autoencoder (CAE). The more innovative AD methods put forward by this work are Deep Support Vector Data Description (Deep SVDD) and Random Projection Depth (RPD), belonging respectively to deep and shallow AD. The semi-supervised adaptation of Deep SVDD constitutes our SAD method. HRRP data was generated by a coastal surveillance radar, our results thus suggest that AD can contribute to enhance maritime and coastal situation awareness.
Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision
In this paper, we study the semi-supervised semantic segmentation problem via exploring both labeled data and extra unlabeled data. We propose a novel consistency regularization approach, called cross pseudo supervision (CPS). Our approach imposes the consistency on two segmentation networks perturbed with different initialization for the same input image. The pseudo one-hot label map, output from one perturbed segmentation network, is used to supervise the other segmentation network with the standard cross-entropy loss, and vice versa. The CPS consistency has two roles: encourage high similarity between the predictions of two perturbed networks for the same input image, and expand training data by using the unlabeled data with pseudo labels. Experiment results show that our approach achieves the state-of-the-art semi-supervised segmentation performance on Cityscapes and PASCAL VOC 2012. Code is available at https://git.io/CPS.
Semi-Supervised Learning for Multi-Task Scene Understanding by Neural Graph Consensus
We address the challenging problem of semi-supervised learning in the context of multiple visual interpretations of the world by finding consensus in a graph of neural networks. Each graph node is a scene interpretation layer, while each edge is a deep net that transforms one layer at one node into another from a different node. During the supervised phase edge networks are trained independently. During the next unsupervised stage edge nets are trained on the pseudo-ground truth provided by consensus among multiple paths that reach the nets' start and end nodes. These paths act as ensemble teachers for any given edge and strong consensus is used for high-confidence supervisory signal. The unsupervised learning process is repeated over several generations, in which each edge becomes a "student" and also part of different ensemble "teachers" for training other students. By optimizing such consensus between different paths, the graph reaches consistency and robustness over multiple interpretations and generations, in the face of unknown labels. We give theoretical justifications of the proposed idea and validate it on a large dataset. We show how prediction of different representations such as depth, semantic segmentation, surface normals and pose from RGB input could be effectively learned through self-supervised consensus in our graph. We also compare to state-of-the-art methods for multi-task and semi-supervised learning and show superior performance.
Calibrating Uncertainty for Semi-Supervised Crowd Counting
Semi-supervised crowd counting is an important yet challenging task. A popular approach is to iteratively generate pseudo-labels for unlabeled data and add them to the training set. The key is to use uncertainty to select reliable pseudo-labels. In this paper, we propose a novel method to calibrate model uncertainty for crowd counting. Our method takes a supervised uncertainty estimation strategy to train the model through a surrogate function. This ensures the uncertainty is well controlled throughout the training. We propose a matching-based patch-wise surrogate function to better approximate uncertainty for crowd counting tasks. The proposed method pays a sufficient amount of attention to details, while maintaining a proper granularity. Altogether our method is able to generate reliable uncertainty estimation, high quality pseudolabels, and achieve state-of-the-art performance in semisupervised crowd counting.
ReconVAT: A Semi-Supervised Automatic Music Transcription Framework for Low-Resource Real-World Data
Most of the current supervised automatic music transcription (AMT) models lack the ability to generalize. This means that they have trouble transcribing real-world music recordings from diverse musical genres that are not presented in the labelled training data. In this paper, we propose a semi-supervised framework, ReconVAT, which solves this issue by leveraging the huge amount of available unlabelled music recordings. The proposed ReconVAT uses reconstruction loss and virtual adversarial training. When combined with existing U-net models for AMT, ReconVAT achieves competitive results on common benchmark datasets such as MAPS and MusicNet. For example, in the few-shot setting for the string part version of MusicNet, ReconVAT achieves F1-scores of 61.0% and 41.6% for the note-wise and note-with-offset-wise metrics respectively, which translates into an improvement of 22.2% and 62.5% compared to the supervised baseline model. Our proposed framework also demonstrates the potential of continual learning on new data, which could be useful in real-world applications whereby new data is constantly available.
SemiVL: Semi-Supervised Semantic Segmentation with Vision-Language Guidance
In semi-supervised semantic segmentation, a model is trained with a limited number of labeled images along with a large corpus of unlabeled images to reduce the high annotation effort. While previous methods are able to learn good segmentation boundaries, they are prone to confuse classes with similar visual appearance due to the limited supervision. On the other hand, vision-language models (VLMs) are able to learn diverse semantic knowledge from image-caption datasets but produce noisy segmentation due to the image-level training. In SemiVL, we propose to integrate rich priors from VLM pre-training into semi-supervised semantic segmentation to learn better semantic decision boundaries. To adapt the VLM from global to local reasoning, we introduce a spatial fine-tuning strategy for label-efficient learning. Further, we design a language-guided decoder to jointly reason over vision and language. Finally, we propose to handle inherent ambiguities in class labels by providing the model with language guidance in the form of class definitions. We evaluate SemiVL on 4 semantic segmentation datasets, where it significantly outperforms previous semi-supervised methods. For instance, SemiVL improves the state-of-the-art by +13.5 mIoU on COCO with 232 annotated images and by +6.1 mIoU on Pascal VOC with 92 labels. Project page: https://github.com/google-research/semivl
CorrMatch: Label Propagation via Correlation Matching for Semi-Supervised Semantic Segmentation
This paper presents a simple but performant semi-supervised semantic segmentation approach, called CorrMatch. Previous approaches mostly employ complicated training strategies to leverage unlabeled data but overlook the role of correlation maps in modeling the relationships between pairs of locations. We observe that the correlation maps not only enable clustering pixels of the same category easily but also contain good shape information, which previous works have omitted. Motivated by these, we aim to improve the use efficiency of unlabeled data by designing two novel label propagation strategies. First, we propose to conduct pixel propagation by modeling the pairwise similarities of pixels to spread the high-confidence pixels and dig out more. Then, we perform region propagation to enhance the pseudo labels with accurate class-agnostic masks extracted from the correlation maps. CorrMatch achieves great performance on popular segmentation benchmarks. Taking the DeepLabV3+ with ResNet-101 backbone as our segmentation model, we receive a 76%+ mIoU score on the Pascal VOC 2012 dataset with only 92 annotated images. Code is available at https://github.com/BBBBchan/CorrMatch.
Semi-Supervised Offline Reinforcement Learning with Action-Free Trajectories
Natural agents can effectively learn from multiple data sources that differ in size, quality, and types of measurements. We study this heterogeneity in the context of offline reinforcement learning (RL) by introducing a new, practically motivated semi-supervised setting. Here, an agent has access to two sets of trajectories: labelled trajectories containing state, action and reward triplets at every timestep, along with unlabelled trajectories that contain only state and reward information. For this setting, we develop and study a simple meta-algorithmic pipeline that learns an inverse dynamics model on the labelled data to obtain proxy-labels for the unlabelled data, followed by the use of any offline RL algorithm on the true and proxy-labelled trajectories. Empirically, we find this simple pipeline to be highly successful -- on several D4RL benchmarks~fu2020d4rl, certain offline RL algorithms can match the performance of variants trained on a fully labelled dataset even when we label only 10\% of trajectories which are highly suboptimal. To strengthen our understanding, we perform a large-scale controlled empirical study investigating the interplay of data-centric properties of the labelled and unlabelled datasets, with algorithmic design choices (e.g., choice of inverse dynamics, offline RL algorithm) to identify general trends and best practices for training RL agents on semi-supervised offline datasets.
Diff3DETR:Agent-based Diffusion Model for Semi-supervised 3D Object Detection
3D object detection is essential for understanding 3D scenes. Contemporary techniques often require extensive annotated training data, yet obtaining point-wise annotations for point clouds is time-consuming and laborious. Recent developments in semi-supervised methods seek to mitigate this problem by employing a teacher-student framework to generate pseudo-labels for unlabeled point clouds. However, these pseudo-labels frequently suffer from insufficient diversity and inferior quality. To overcome these hurdles, we introduce an Agent-based Diffusion Model for Semi-supervised 3D Object Detection (Diff3DETR). Specifically, an agent-based object query generator is designed to produce object queries that effectively adapt to dynamic scenes while striking a balance between sampling locations and content embedding. Additionally, a box-aware denoising module utilizes the DDIM denoising process and the long-range attention in the transformer decoder to refine bounding boxes incrementally. Extensive experiments on ScanNet and SUN RGB-D datasets demonstrate that Diff3DETR outperforms state-of-the-art semi-supervised 3D object detection methods.
Match me if you can: Semi-Supervised Semantic Correspondence Learning with Unpaired Images
Semantic correspondence methods have advanced to obtaining high-quality correspondences employing complicated networks, aiming to maximize the model capacity. However, despite the performance improvements, they may remain constrained by the scarcity of training keypoint pairs, a consequence of the limited training images and the sparsity of keypoints. This paper builds on the hypothesis that there is an inherent data-hungry matter in learning semantic correspondences and uncovers the models can be more trained by employing densified training pairs. We demonstrate a simple machine annotator reliably enriches paired key points via machine supervision, requiring neither extra labeled key points nor trainable modules from unlabeled images. Consequently, our models surpass current state-of-the-art models on semantic correspondence learning benchmarks like SPair-71k, PF-PASCAL, and PF-WILLOW and enjoy further robustness on corruption benchmarks. Our code is available at https://github.com/naver-ai/matchme.
SimMatchV2: Semi-Supervised Learning with Graph Consistency
Semi-Supervised image classification is one of the most fundamental problem in computer vision, which significantly reduces the need for human labor. In this paper, we introduce a new semi-supervised learning algorithm - SimMatchV2, which formulates various consistency regularizations between labeled and unlabeled data from the graph perspective. In SimMatchV2, we regard the augmented view of a sample as a node, which consists of a label and its corresponding representation. Different nodes are connected with the edges, which are measured by the similarity of the node representations. Inspired by the message passing and node classification in graph theory, we propose four types of consistencies, namely 1) node-node consistency, 2) node-edge consistency, 3) edge-edge consistency, and 4) edge-node consistency. We also uncover that a simple feature normalization can reduce the gaps of the feature norm between different augmented views, significantly improving the performance of SimMatchV2. Our SimMatchV2 has been validated on multiple semi-supervised learning benchmarks. Notably, with ResNet-50 as our backbone and 300 epochs of training, SimMatchV2 achieves 71.9\% and 76.2\% Top-1 Accuracy with 1\% and 10\% labeled examples on ImageNet, which significantly outperforms the previous methods and achieves state-of-the-art performance. Code and pre-trained models are available at https://github.com/mingkai-zheng/SimMatchV2{https://github.com/mingkai-zheng/SimMatchV2}.
R2S100K: Road-Region Segmentation Dataset For Semi-Supervised Autonomous Driving in the Wild
Semantic understanding of roadways is a key enabling factor for safe autonomous driving. However, existing autonomous driving datasets provide well-structured urban roads while ignoring unstructured roadways containing distress, potholes, water puddles, and various kinds of road patches i.e., earthen, gravel etc. To this end, we introduce Road Region Segmentation dataset (R2S100K) -- a large-scale dataset and benchmark for training and evaluation of road segmentation in aforementioned challenging unstructured roadways. R2S100K comprises 100K images extracted from a large and diverse set of video sequences covering more than 1000 KM of roadways. Out of these 100K privacy respecting images, 14,000 images have fine pixel-labeling of road regions, with 86,000 unlabeled images that can be leveraged through semi-supervised learning methods. Alongside, we present an Efficient Data Sampling (EDS) based self-training framework to improve learning by leveraging unlabeled data. Our experimental results demonstrate that the proposed method significantly improves learning methods in generalizability and reduces the labeling cost for semantic segmentation tasks. Our benchmark will be publicly available to facilitate future research at https://r2s100k.github.io/.
SemiPFL: Personalized Semi-Supervised Federated Learning Framework for Edge Intelligence
Recent advances in wearable devices and Internet-of-Things (IoT) have led to massive growth in sensor data generated in edge devices. Labeling such massive data for classification tasks has proven to be challenging. In addition, data generated by different users bear various personal attributes and edge heterogeneity, rendering it impractical to develop a global model that adapts well to all users. Concerns over data privacy and communication costs also prohibit centralized data accumulation and training. We propose SemiPFL that supports edge users having no label or limited labeled datasets and a sizable amount of unlabeled data that is insufficient to train a well-performing model. In this work, edge users collaborate to train a Hyper-network in the server, generating personalized autoencoders for each user. After receiving updates from edge users, the server produces a set of base models for each user, which the users locally aggregate them using their own labeled dataset. We comprehensively evaluate our proposed framework on various public datasets from a wide range of application scenarios, from wearable health to IoT, and demonstrate that SemiPFL outperforms state-of-art federated learning frameworks under the same assumptions regarding user performance, network footprint, and computational consumption. We also show that the solution performs well for users without label or having limited labeled datasets and increasing performance for increased labeled data and number of users, signifying the effectiveness of SemiPFL for handling data heterogeneity and limited annotation. We also demonstrate the stability of SemiPFL for handling user hardware resource heterogeneity in three real-time scenarios.
Simple Semi-supervised Knowledge Distillation from Vision-Language Models via $\mathbf{\texttt{D}}$ual-$\mathbf{\texttt{H}}$ead $\mathbf{\texttt{O}}$ptimization
Vision-language models (VLMs) have achieved remarkable success across diverse tasks by leveraging rich textual information with minimal labeled data. However, deploying such large models remains challenging, particularly in resource-constrained environments. Knowledge distillation (KD) offers a well-established solution to this problem; however, recent KD approaches from VLMs often involve multi-stage training or additional tuning, increasing computational overhead and optimization complexity. In this paper, we propose texttt{D}ual-texttt{H}ead texttt{O}ptimization (texttt{DHO}) -- a simple yet effective KD framework that transfers knowledge from VLMs to compact, task-specific models in semi-supervised settings. Specifically, we introduce dual prediction heads that independently learn from labeled data and teacher predictions, and propose to linearly combine their outputs during inference. We observe that DHO mitigates gradient conflicts between supervised and distillation signals, enabling more effective feature learning than single-head KD baselines. As a result, extensive experiments show that DHO consistently outperforms baselines across multiple domains and fine-grained datasets. Notably, on ImageNet, it achieves state-of-the-art performance, improving accuracy by 3% and 0.1% with 1% and 10% labeled data, respectively, while using fewer parameters.
STaRFormer: Semi-Supervised Task-Informed Representation Learning via Dynamic Attention-Based Regional Masking for Sequential Data
Accurate predictions using sequential spatiotemporal data are crucial for various applications. Utilizing real-world data, we aim to learn the intent of a smart device user within confined areas of a vehicle's surroundings. However, in real-world scenarios, environmental factors and sensor limitations result in non-stationary and irregularly sampled data, posing significant challenges. To address these issues, we developed a Transformer-based approach, STaRFormer, which serves as a universal framework for sequential modeling. STaRFormer employs a novel, dynamic attention-based regional masking scheme combined with semi-supervised contrastive learning to enhance task-specific latent representations. Comprehensive experiments on 15 datasets varying in types (including non-stationary and irregularly sampled), domains, sequence lengths, training samples, and applications, demonstrate the efficacy and practicality of STaRFormer. We achieve notable improvements over state-of-the-art approaches. Code and data will be made available.
A New Teacher-Reviewer-Student Framework for Semi-supervised 2D Human Pose Estimation
Conventional 2D human pose estimation methods typically require extensive labeled annotations, which are both labor-intensive and expensive. In contrast, semi-supervised 2D human pose estimation can alleviate the above problems by leveraging a large amount of unlabeled data along with a small portion of labeled data. Existing semi-supervised 2D human pose estimation methods update the network through backpropagation, ignoring crucial historical information from the previous training process. Therefore, we propose a novel semi-supervised 2D human pose estimation method by utilizing a newly designed Teacher-Reviewer-Student framework. Specifically, we first mimic the phenomenon that human beings constantly review previous knowledge for consolidation to design our framework, in which the teacher predicts results to guide the student's learning and the reviewer stores important historical parameters to provide additional supervision signals. Secondly, we introduce a Multi-level Feature Learning strategy, which utilizes the outputs from different stages of the backbone to estimate the heatmap to guide network training, enriching the supervisory information while effectively capturing keypoint relationships. Finally, we design a data augmentation strategy, i.e., Keypoint-Mix, to perturb pose information by mixing different keypoints, thus enhancing the network's ability to discern keypoints. Extensive experiments on publicly available datasets, demonstrate our method achieves significant improvements compared to the existing methods.
Towards Label-Efficient Human Matting: A Simple Baseline for Weakly Semi-Supervised Trimap-Free Human Matting
This paper presents a new practical training method for human matting, which demands delicate pixel-level human region identification and significantly laborious annotations. To reduce the annotation cost, most existing matting approaches often rely on image synthesis to augment the dataset. However, the unnaturalness of synthesized training images brings in a new domain generalization challenge for natural images. To address this challenge, we introduce a new learning paradigm, weakly semi-supervised human matting (WSSHM), which leverages a small amount of expensive matte labels and a large amount of budget-friendly segmentation labels, to save the annotation cost and resolve the domain generalization problem. To achieve the goal of WSSHM, we propose a simple and effective training method, named Matte Label Blending (MLB), that selectively guides only the beneficial knowledge of the segmentation and matte data to the matting model. Extensive experiments with our detailed analysis demonstrate our method can substantially improve the robustness of the matting model using a few matte data and numerous segmentation data. Our training method is also easily applicable to real-time models, achieving competitive accuracy with breakneck inference speed (328 FPS on NVIDIA V100 GPU). The implementation code is available at https://github.com/clovaai/WSSHM.
Switching Temporary Teachers for Semi-Supervised Semantic Segmentation
The teacher-student framework, prevalent in semi-supervised semantic segmentation, mainly employs the exponential moving average (EMA) to update a single teacher's weights based on the student's. However, EMA updates raise a problem in that the weights of the teacher and student are getting coupled, causing a potential performance bottleneck. Furthermore, this problem may become more severe when training with more complicated labels such as segmentation masks but with few annotated data. This paper introduces Dual Teacher, a simple yet effective approach that employs dual temporary teachers aiming to alleviate the coupling problem for the student. The temporary teachers work in shifts and are progressively improved, so consistently prevent the teacher and student from becoming excessively close. Specifically, the temporary teachers periodically take turns generating pseudo-labels to train a student model and maintain the distinct characteristics of the student model for each epoch. Consequently, Dual Teacher achieves competitive performance on the PASCAL VOC, Cityscapes, and ADE20K benchmarks with remarkably shorter training times than state-of-the-art methods. Moreover, we demonstrate that our approach is model-agnostic and compatible with both CNN- and Transformer-based models. Code is available at https://github.com/naver-ai/dual-teacher.
A Semi-supervised Approach for a Better Translation of Sentiment in Dialectical Arabic UGT
In the online world, Machine Translation (MT) systems are extensively used to translate User-Generated Text (UGT) such as reviews, tweets, and social media posts, where the main message is often the author's positive or negative attitude towards the topic of the text. However, MT systems still lack accuracy in some low-resource languages and sometimes make critical translation errors that completely flip the sentiment polarity of the target word or phrase and hence delivers a wrong affect message. This is particularly noticeable in texts that do not follow common lexico-grammatical standards such as the dialectical Arabic (DA) used on online platforms. In this research, we aim to improve the translation of sentiment in UGT written in the dialectical versions of the Arabic language to English. Given the scarcity of gold-standard parallel data for DA-EN in the UGT domain, we introduce a semi-supervised approach that exploits both monolingual and parallel data for training an NMT system initialised by a cross-lingual language model trained with supervised and unsupervised modeling objectives. We assess the accuracy of sentiment translation by our proposed system through a numerical 'sentiment-closeness' measure as well as human evaluation. We will show that our semi-supervised MT system can significantly help with correcting sentiment errors detected in the online translation of dialectical Arabic UGT.
Comparison of semi-supervised deep learning algorithms for audio classification
In this article, we adapted five recent SSL methods to the task of audio classification. The first two methods, namely Deep Co-Training (DCT) and Mean Teacher (MT), involve two collaborative neural networks. The three other algorithms, called MixMatch (MM), ReMixMatch (RMM), and FixMatch (FM), are single-model methods that rely primarily on data augmentation strategies. Using the Wide-ResNet-28-2 architecture in all our experiments, 10% of labeled data and the remaining 90% as unlabeled data for training, we first compare the error rates of the five methods on three standard benchmark audio datasets: Environmental Sound Classification (ESC-10), UrbanSound8K (UBS8K), and Google Speech Commands (GSC). In all but one cases, MM, RMM, and FM outperformed MT and DCT significantly, MM and RMM being the best methods in most experiments. On UBS8K and GSC, MM achieved 18.02% and 3.25% error rate (ER), respectively, outperforming models trained with 100% of the available labeled data, which reached 23.29% and 4.94%, respectively. RMM achieved the best results on ESC-10 (12.00% ER), followed by FM which reached 13.33%. Second, we explored adding the mixup augmentation, used in MM and RMM, to DCT, MT, and FM. In almost all cases, mixup brought consistent gains. For instance, on GSC, FM reached 4.44% and 3.31% ER without and with mixup. Our PyTorch code will be made available upon paper acceptance at https:// github. com/ Labbe ti/ SSLH.
SemiSegECG: A Multi-Dataset Benchmark for Semi-Supervised Semantic Segmentation in ECG Delineation
Electrocardiogram (ECG) delineation, the segmentation of meaningful waveform features, is critical for clinical diagnosis. Despite recent advances using deep learning, progress has been limited by the scarcity of publicly available annotated datasets. Semi-supervised learning presents a promising solution by leveraging abundant unlabeled ECG data. In this study, we present SemiSegECG, the first systematic benchmark for semi-supervised semantic segmentation (SemiSeg) in ECG delineation. We curated and unified multiple public datasets, including previously underused sources, to support robust and diverse evaluation. We adopted five representative SemiSeg algorithms from computer vision, implemented them on two different architectures: the convolutional network and the transformer, and evaluated them in two different settings: in-domain and cross-domain. Additionally, we propose ECG-specific training configurations and augmentation strategies and introduce a standardized evaluation framework. Our results show that the transformer outperforms the convolutional network in semi-supervised ECG delineation. We anticipate that SemiSegECG will serve as a foundation for advancing semi-supervised ECG delineation methods and will facilitate further research in this domain.
Point-DETR3D: Leveraging Imagery Data with Spatial Point Prior for Weakly Semi-supervised 3D Object Detection
Training high-accuracy 3D detectors necessitates massive labeled 3D annotations with 7 degree-of-freedom, which is laborious and time-consuming. Therefore, the form of point annotations is proposed to offer significant prospects for practical applications in 3D detection, which is not only more accessible and less expensive but also provides strong spatial information for object localization. In this paper, we empirically discover that it is non-trivial to merely adapt Point-DETR to its 3D form, encountering two main bottlenecks: 1) it fails to encode strong 3D prior into the model, and 2) it generates low-quality pseudo labels in distant regions due to the extreme sparsity of LiDAR points. To overcome these challenges, we introduce Point-DETR3D, a teacher-student framework for weakly semi-supervised 3D detection, designed to fully capitalize on point-wise supervision within a constrained instance-wise annotation budget.Different from Point-DETR which encodes 3D positional information solely through a point encoder, we propose an explicit positional query initialization strategy to enhance the positional prior. Considering the low quality of pseudo labels at distant regions produced by the teacher model, we enhance the detector's perception by incorporating dense imagery data through a novel Cross-Modal Deformable RoI Fusion (D-RoI).Moreover, an innovative point-guided self-supervised learning technique is proposed to allow for fully exploiting point priors, even in student models.Extensive experiments on representative nuScenes dataset demonstrate our Point-DETR3D obtains significant improvements compared to previous works. Notably, with only 5% of labeled data, Point-DETR3D achieves over 90% performance of its fully supervised counterpart.
Diversify and Conquer: Open-set Disagreement for Robust Semi-supervised Learning with Outliers
Conventional semi-supervised learning (SSL) ideally assumes that labeled and unlabeled data share an identical class distribution, however in practice, this assumption is easily violated, as unlabeled data often includes unknown class data, i.e., outliers. The outliers are treated as noise, considerably degrading the performance of SSL models. To address this drawback, we propose a novel framework, Diversify and Conquer (DAC), to enhance SSL robustness in the context of open-set semi-supervised learning. In particular, we note that existing open-set SSL methods rely on prediction discrepancies between inliers and outliers from a single model trained on labeled data. This approach can be easily failed when the labeled data is insufficient, leading to performance degradation that is worse than naive SSL that do not account for outliers. In contrast, our approach exploits prediction disagreements among multiple models that are differently biased towards the unlabeled distribution. By leveraging the discrepancies arising from training on unlabeled data, our method enables robust outlier detection even when the labeled data is underspecified. Our key contribution is constructing a collection of differently biased models through a single training process. By encouraging divergent heads to be differently biased towards outliers while making consistent predictions for inliers, we exploit the disagreement among these heads as a measure to identify unknown concepts. Our code is available at https://github.com/heejokong/DivCon.
ItTakesTwo: Leveraging Peer Representations for Semi-supervised LiDAR Semantic Segmentation
The costly and time-consuming annotation process to produce large training sets for modelling semantic LiDAR segmentation methods has motivated the development of semi-supervised learning (SSL) methods. However, such SSL approaches often concentrate on employing consistency learning only for individual LiDAR representations. This narrow focus results in limited perturbations that generally fail to enable effective consistency learning. Additionally, these SSL approaches employ contrastive learning based on the sampling from a limited set of positive and negative embedding samples. This paper introduces a novel semi-supervised LiDAR semantic segmentation framework called ItTakesTwo (IT2). IT2 is designed to ensure consistent predictions from peer LiDAR representations, thereby improving the perturbation effectiveness in consistency learning. Furthermore, our contrastive learning employs informative samples drawn from a distribution of positive and negative embeddings learned from the entire training set. Results on public benchmarks show that our approach achieves remarkable improvements over the previous state-of-the-art (SOTA) methods in the field. The code is available at: https://github.com/yyliu01/IT2.
Cross Pseudo-Labeling for Semi-Supervised Audio-Visual Source Localization
Audio-Visual Source Localization (AVSL) is the task of identifying specific sounding objects in the scene given audio cues. In our work, we focus on semi-supervised AVSL with pseudo-labeling. To address the issues with vanilla hard pseudo-labels including bias accumulation, noise sensitivity, and instability, we propose a novel method named Cross Pseudo-Labeling (XPL), wherein two models learn from each other with the cross-refine mechanism to avoid bias accumulation. We equip XPL with two effective components. Firstly, the soft pseudo-labels with sharpening and pseudo-label exponential moving average mechanisms enable models to achieve gradual self-improvement and ensure stable training. Secondly, the curriculum data selection module adaptively selects pseudo-labels with high quality during training to mitigate potential bias. Experimental results demonstrate that XPL significantly outperforms existing methods, achieving state-of-the-art performance while effectively mitigating confirmation bias and ensuring training stability.
Dual Structure-Aware Image Filterings for Semi-supervised Medical Image Segmentation
Semi-supervised image segmentation has attracted great attention recently. The key is how to leverage unlabeled images in the training process. Most methods maintain consistent predictions of the unlabeled images under variations (e.g., adding noise/perturbations, or creating alternative versions) in the image and/or model level. In most image-level variation, medical images often have prior structure information, which has not been well explored. In this paper, we propose novel dual structure-aware image filterings (DSAIF) as the image-level variations for semi-supervised medical image segmentation. Motivated by connected filtering that simplifies image via filtering in structure-aware tree-based image representation, we resort to the dual contrast invariant Max-tree and Min-tree representation. Specifically, we propose a novel connected filtering that removes topologically equivalent nodes (i.e. connected components) having no siblings in the Max/Min-tree. This results in two filtered images preserving topologically critical structure. Applying the proposed DSAIF to mutually supervised networks decreases the consensus of their erroneous predictions on unlabeled images. This helps to alleviate the confirmation bias issue of overfitting to noisy pseudo labels of unlabeled images, and thus effectively improves the segmentation performance. Extensive experimental results on three benchmark datasets demonstrate that the proposed method significantly/consistently outperforms some state-of-the-art methods. The source codes will be publicly available.
Noise2Recon: Enabling Joint MRI Reconstruction and Denoising with Semi-Supervised and Self-Supervised Learning
Deep learning (DL) has shown promise for faster, high quality accelerated MRI reconstruction. However, supervised DL methods depend on extensive amounts of fully-sampled (labeled) data and are sensitive to out-of-distribution (OOD) shifts, particularly low signal-to-noise ratio (SNR) acquisitions. To alleviate this challenge, we propose Noise2Recon, a model-agnostic, consistency training method for joint MRI reconstruction and denoising that can use both fully-sampled (labeled) and undersampled (unlabeled) scans in semi-supervised and self-supervised settings. With limited or no labeled training data, Noise2Recon outperforms compressed sensing and deep learning baselines, including supervised networks, augmentation-based training, fine-tuned denoisers, and self-supervised methods, and matches performance of supervised models, which were trained with 14x more fully-sampled scans. Noise2Recon also outperforms all baselines, including state-of-the-art fine-tuning and augmentation techniques, among low-SNR scans and when generalizing to other OOD factors, such as changes in acceleration factors and different datasets. Augmentation extent and loss weighting hyperparameters had negligible impact on Noise2Recon compared to supervised methods, which may indicate increased training stability. Our code is available at https://github.com/ad12/meddlr.
CE-SSL: Computation-Efficient Semi-Supervised Learning for ECG-based Cardiovascular Diseases Detection
The label scarcity problem is the main challenge that hinders the wide application of deep learning systems in automatic cardiovascular diseases (CVDs) detection using electrocardiography (ECG). Tuning pre-trained models alleviates this problem by transferring knowledge learned from large datasets to downstream small datasets. However, bottlenecks in computational efficiency and detection performance limit its clinical applications. It is difficult to improve the detection performance without significantly sacrificing the computational efficiency during model training. Here, we propose a computation-efficient semi-supervised learning paradigm (CE-SSL) for robust and computation-efficient CVDs detection using ECG. It enables a robust adaptation of pre-trained models on downstream datasets with limited supervision and high computational efficiency. First, a random-deactivation technique is developed to achieve robust and fast low-rank adaptation of pre-trained weights. Subsequently, we propose a one-shot rank allocation module to determine the optimal ranks for the update matrices of the pre-trained weights. Finally, a lightweight semi-supervised learning pipeline is introduced to enhance model performance by leveraging labeled and unlabeled data with high computational efficiency. Extensive experiments on four downstream datasets demonstrate that CE-SSL not only outperforms the state-of-the-art methods in multi-label CVDs detection but also consumes fewer GPU footprints, training time, and parameter storage space. As such, this paradigm provides an effective solution for achieving high computational efficiency and robust detection performance in the clinical applications of pre-trained models under limited supervision. Code and Supplementary Materials are available at https://github.com/KAZABANA/CE-SSL
Pseudo-label Alignment for Semi-supervised Instance Segmentation
Pseudo-labeling is significant for semi-supervised instance segmentation, which generates instance masks and classes from unannotated images for subsequent training. However, in existing pipelines, pseudo-labels that contain valuable information may be directly filtered out due to mismatches in class and mask quality. To address this issue, we propose a novel framework, called pseudo-label aligning instance segmentation (PAIS), in this paper. In PAIS, we devise a dynamic aligning loss (DALoss) that adjusts the weights of semi-supervised loss terms with varying class and mask score pairs. Through extensive experiments conducted on the COCO and Cityscapes datasets, we demonstrate that PAIS is a promising framework for semi-supervised instance segmentation, particularly in cases where labeled data is severely limited. Notably, with just 1\% labeled data, PAIS achieves 21.2 mAP (based on Mask-RCNN) and 19.9 mAP (based on K-Net) on the COCO dataset, outperforming the current state-of-the-art model, \ie, NoisyBoundary with 7.7 mAP, by a margin of over 12 points. Code is available at: https://github.com/hujiecpp/PAIS.
Goal Representations for Instruction Following: A Semi-Supervised Language Interface to Control
Our goal is for robots to follow natural language instructions like "put the towel next to the microwave." But getting large amounts of labeled data, i.e. data that contains demonstrations of tasks labeled with the language instruction, is prohibitive. In contrast, obtaining policies that respond to image goals is much easier, because any autonomous trial or demonstration can be labeled in hindsight with its final state as the goal. In this work, we contribute a method that taps into joint image- and goal- conditioned policies with language using only a small amount of language data. Prior work has made progress on this using vision-language models or by jointly training language-goal-conditioned policies, but so far neither method has scaled effectively to real-world robot tasks without significant human annotation. Our method achieves robust performance in the real world by learning an embedding from the labeled data that aligns language not to the goal image, but rather to the desired change between the start and goal images that the instruction corresponds to. We then train a policy on this embedding: the policy benefits from all the unlabeled data, but the aligned embedding provides an interface for language to steer the policy. We show instruction following across a variety of manipulation tasks in different scenes, with generalization to language instructions outside of the labeled data. Videos and code for our approach can be found on our website: http://tiny.cc/grif .
CAST: Contrastive Adaptation and Distillation for Semi-Supervised Instance Segmentation
Instance segmentation demands costly per-pixel annotations and large models. We introduce CAST, a semi-supervised knowledge distillation (SSKD) framework that compresses pretrained vision foundation models (VFM) into compact experts using limited labeled and abundant unlabeled data. CAST unfolds in three stages: (1) domain adaptation of the VFM teacher(s) via self-training with contrastive pixel calibration, (2) distillation into a compact student via a unified multi-objective loss that couples standard supervision and pseudo-labels with our instance-aware pixel-wise contrastive term, and (3) fine-tuning on labeled data to remove residual pseudo-label bias. Central to CAST is an instance-aware pixel-wise contrastive loss that fuses mask and class scores to mine informative negatives and enforce clear inter-instance margins. By maintaining this contrastive signal across both adaptation and distillation, we align teacher and student embeddings and fully leverage unlabeled images. On Cityscapes and ADE20K, our ~11X smaller student surpasses its adapted VFM teacher(s) by +3.4 AP (33.9 vs. 30.5) and +1.5 AP (16.7 vs. 15.2) and outperforms state-of-the-art semi-supervised approaches.
Inpainting is All You Need: A Diffusion-based Augmentation Method for Semi-supervised Medical Image Segmentation
Collecting pixel-level labels for medical datasets can be a laborious and expensive process, and enhancing segmentation performance with a scarcity of labeled data is a crucial challenge. This work introduces AugPaint, a data augmentation framework that utilizes inpainting to generate image-label pairs from limited labeled data. AugPaint leverages latent diffusion models, known for their ability to generate high-quality in-domain images with low overhead, and adapts the sampling process for the inpainting task without need for retraining. Specifically, given a pair of image and label mask, we crop the area labeled with the foreground and condition on it during reversed denoising process for every noise level. Masked background area would gradually be filled in, and all generated images are paired with the label mask. This approach ensures the accuracy of match between synthetic images and label masks, setting it apart from existing dataset generation methods. The generated images serve as valuable supervision for training downstream segmentation models, effectively addressing the challenge of limited annotations. We conducted extensive evaluations of our data augmentation method on four public medical image segmentation datasets, including CT, MRI, and skin imaging. Results across all datasets demonstrate that AugPaint outperforms state-of-the-art label-efficient methodologies, significantly improving segmentation performance.
S-MolSearch: 3D Semi-supervised Contrastive Learning for Bioactive Molecule Search
Virtual Screening is an essential technique in the early phases of drug discovery, aimed at identifying promising drug candidates from vast molecular libraries. Recently, ligand-based virtual screening has garnered significant attention due to its efficacy in conducting extensive database screenings without relying on specific protein-binding site information. Obtaining binding affinity data for complexes is highly expensive, resulting in a limited amount of available data that covers a relatively small chemical space. Moreover, these datasets contain a significant amount of inconsistent noise. It is challenging to identify an inductive bias that consistently maintains the integrity of molecular activity during data augmentation. To tackle these challenges, we propose S-MolSearch, the first framework to our knowledge, that leverages molecular 3D information and affinity information in semi-supervised contrastive learning for ligand-based virtual screening. Drawing on the principles of inverse optimal transport, S-MolSearch efficiently processes both labeled and unlabeled data, training molecular structural encoders while generating soft labels for the unlabeled data. This design allows S-MolSearch to adaptively utilize unlabeled data within the learning process. Empirically, S-MolSearch demonstrates superior performance on widely-used benchmarks LIT-PCBA and DUD-E. It surpasses both structure-based and ligand-based virtual screening methods for AUROC, BEDROC and EF.
Anatomically-aware Uncertainty for Semi-supervised Image Segmentation
Semi-supervised learning relaxes the need of large pixel-wise labeled datasets for image segmentation by leveraging unlabeled data. A prominent way to exploit unlabeled data is to regularize model predictions. Since the predictions of unlabeled data can be unreliable, uncertainty-aware schemes are typically employed to gradually learn from meaningful and reliable predictions. Uncertainty estimation methods, however, rely on multiple inferences from the model predictions that must be computed for each training step, which is computationally expensive. Moreover, these uncertainty maps capture pixel-wise disparities and do not consider global information. This work proposes a novel method to estimate segmentation uncertainty by leveraging global information from the segmentation masks. More precisely, an anatomically-aware representation is first learnt to model the available segmentation masks. The learnt representation thereupon maps the prediction of a new segmentation into an anatomically-plausible segmentation. The deviation from the plausible segmentation aids in estimating the underlying pixel-level uncertainty in order to further guide the segmentation network. The proposed method consequently estimates the uncertainty using a single inference from our representation, thereby reducing the total computation. We evaluate our method on two publicly available segmentation datasets of left atria in cardiac MRIs and of multiple organs in abdominal CTs. Our anatomically-aware method improves the segmentation accuracy over the state-of-the-art semi-supervised methods in terms of two commonly used evaluation metrics.
DeCrisisMB: Debiased Semi-Supervised Learning for Crisis Tweet Classification via Memory Bank
During crisis events, people often use social media platforms such as Twitter to disseminate information about the situation, warnings, advice, and support. Emergency relief organizations leverage such information to acquire timely crisis circumstances and expedite rescue operations. While existing works utilize such information to build models for crisis event analysis, fully-supervised approaches require annotating vast amounts of data and are impractical due to limited response time. On the other hand, semi-supervised models can be biased, performing moderately well for certain classes while performing extremely poorly for others, resulting in substantially negative effects on disaster monitoring and rescue. In this paper, we first study two recent debiasing methods on semi-supervised crisis tweet classification. Then we propose a simple but effective debiasing method, DeCrisisMB, that utilizes a Memory Bank to store and perform equal sampling for generated pseudo-labels from each class at each training iteration. Extensive experiments are conducted to compare different debiasing methods' performance and generalization ability in both in-distribution and out-of-distribution settings. The results demonstrate the superior performance of our proposed method. Our code is available at https://github.com/HenryPengZou/DeCrisisMB.
TreeFormer: a Semi-Supervised Transformer-based Framework for Tree Counting from a Single High Resolution Image
Automatic tree density estimation and counting using single aerial and satellite images is a challenging task in photogrammetry and remote sensing, yet has an important role in forest management. In this paper, we propose the first semisupervised transformer-based framework for tree counting which reduces the expensive tree annotations for remote sensing images. Our method, termed as TreeFormer, first develops a pyramid tree representation module based on transformer blocks to extract multi-scale features during the encoding stage. Contextual attention-based feature fusion and tree density regressor modules are further designed to utilize the robust features from the encoder to estimate tree density maps in the decoder. Moreover, we propose a pyramid learning strategy that includes local tree density consistency and local tree count ranking losses to utilize unlabeled images into the training process. Finally, the tree counter token is introduced to regulate the network by computing the global tree counts for both labeled and unlabeled images. Our model was evaluated on two benchmark tree counting datasets, Jiangsu, and Yosemite, as well as a new dataset, KCL-London, created by ourselves. Our TreeFormer outperforms the state of the art semi-supervised methods under the same setting and exceeds the fully-supervised methods using the same number of labeled images. The codes and datasets are available at https://github.com/HAAClassic/TreeFormer.
DQS3D: Densely-matched Quantization-aware Semi-supervised 3D Detection
In this paper, we study the problem of semi-supervised 3D object detection, which is of great importance considering the high annotation cost for cluttered 3D indoor scenes. We resort to the robust and principled framework of selfteaching, which has triggered notable progress for semisupervised learning recently. While this paradigm is natural for image-level or pixel-level prediction, adapting it to the detection problem is challenged by the issue of proposal matching. Prior methods are based upon two-stage pipelines, matching heuristically selected proposals generated in the first stage and resulting in spatially sparse training signals. In contrast, we propose the first semisupervised 3D detection algorithm that works in the singlestage manner and allows spatially dense training signals. A fundamental issue of this new design is the quantization error caused by point-to-voxel discretization, which inevitably leads to misalignment between two transformed views in the voxel domain. To this end, we derive and implement closed-form rules that compensate this misalignment onthe-fly. Our results are significant, e.g., promoting ScanNet [email protected] from 35.2% to 48.5% using 20% annotation. Codes and data will be publicly available.
Consistent-Teacher: Towards Reducing Inconsistent Pseudo-targets in Semi-supervised Object Detection
In this study, we dive deep into the inconsistency of pseudo targets in semi-supervised object detection (SSOD). Our core observation is that the oscillating pseudo-targets undermine the training of an accurate detector. It injects noise into the student's training, leading to severe overfitting problems. Therefore, we propose a systematic solution, termed ConsistentTeacher, to reduce the inconsistency. First, adaptive anchor assignment~(ASA) substitutes the static IoU-based strategy, which enables the student network to be resistant to noisy pseudo-bounding boxes. Then we calibrate the subtask predictions by designing a 3D feature alignment module~(FAM-3D). It allows each classification feature to adaptively query the optimal feature vector for the regression task at arbitrary scales and locations. Lastly, a Gaussian Mixture Model (GMM) dynamically revises the score threshold of pseudo-bboxes, which stabilizes the number of ground truths at an early stage and remedies the unreliable supervision signal during training. ConsistentTeacher provides strong results on a large range of SSOD evaluations. It achieves 40.0 mAP with ResNet-50 backbone given only 10% of annotated MS-COCO data, which surpasses previous baselines using pseudo labels by around 3 mAP. When trained on fully annotated MS-COCO with additional unlabeled data, the performance further increases to 47.7 mAP. Our code is available at https://github.com/Adamdad/ConsistentTeacher.
DQR-TTS: Semi-supervised Text-to-speech Synthesis with Dynamic Quantized Representation
Most existing neural-based text-to-speech methods rely on extensive datasets and face challenges under low-resource condition. In this paper, we introduce a novel semi-supervised text-to-speech synthesis model that learns from both paired and unpaired data to address this challenge. The key component of the proposed model is a dynamic quantized representation module, which is integrated into a sequential autoencoder. When given paired data, the module incorporates a trainable codebook that learns quantized representations under the supervision of the paired data. However, due to the limited paired data in low-resource scenario, these paired data are difficult to cover all phonemes. Then unpaired data is fed to expand the dynamic codebook by adding quantized representation vectors that are sufficiently distant from the existing ones during training. Experiments show that with less than 120 minutes of paired data, the proposed method outperforms existing methods in both subjective and objective metrics.
GALAXY: A Generative Pre-trained Model for Task-Oriented Dialog with Semi-Supervised Learning and Explicit Policy Injection
Pre-trained models have proved to be powerful in enhancing task-oriented dialog systems. However, current pre-training methods mainly focus on enhancing dialog understanding and generation tasks while neglecting the exploitation of dialog policy. In this paper, we propose GALAXY, a novel pre-trained dialog model that explicitly learns dialog policy from limited labeled dialogs and large-scale unlabeled dialog corpora via semi-supervised learning. Specifically, we introduce a dialog act prediction task for policy optimization during pre-training and employ a consistency regularization term to refine the learned representation with the help of unlabeled dialogs. We also implement a gating mechanism to weigh suitable unlabeled dialog samples. Empirical results show that GALAXY substantially improves the performance of task-oriented dialog systems, and achieves new state-of-the-art results on benchmark datasets: In-Car, MultiWOZ2.0 and MultiWOZ2.1, improving their end-to-end combined scores by 2.5, 5.3 and 5.5 points, respectively. We also show that GALAXY has a stronger few-shot ability than existing models under various low-resource settings.
Shrinking Class Space for Enhanced Certainty in Semi-Supervised Learning
Semi-supervised learning is attracting blooming attention, due to its success in combining unlabeled data. To mitigate potentially incorrect pseudo labels, recent frameworks mostly set a fixed confidence threshold to discard uncertain samples. This practice ensures high-quality pseudo labels, but incurs a relatively low utilization of the whole unlabeled set. In this work, our key insight is that these uncertain samples can be turned into certain ones, as long as the confusion classes for the top-1 class are detected and removed. Invoked by this, we propose a novel method dubbed ShrinkMatch to learn uncertain samples. For each uncertain sample, it adaptively seeks a shrunk class space, which merely contains the original top-1 class, as well as remaining less likely classes. Since the confusion ones are removed in this space, the re-calculated top-1 confidence can satisfy the pre-defined threshold. We then impose a consistency regularization between a pair of strongly and weakly augmented samples in the shrunk space to strive for discriminative representations. Furthermore, considering the varied reliability among uncertain samples and the gradually improved model during training, we correspondingly design two reweighting principles for our uncertain loss. Our method exhibits impressive performance on widely adopted benchmarks. Code is available at https://github.com/LiheYoung/ShrinkMatch.
Flood Segmentation on Sentinel-1 SAR Imagery with Semi-Supervised Learning
Floods wreak havoc throughout the world, causing billions of dollars in damages, and uprooting communities, ecosystems and economies. The NASA Impact Flood Detection competition tasked participants with predicting flooded pixels after training with synthetic aperture radar (SAR) images in a supervised setting. We propose a semi-supervised learning pseudo-labeling scheme that derives confidence estimates from U-Net ensembles, progressively improving accuracy. Concretely, we use a cyclical approach involving multiple stages (1) training an ensemble model of multiple U-Net architectures with the provided high confidence hand-labeled data and, generated pseudo labels or low confidence labels on the entire unlabeled test dataset, and then, (2) filter out quality generated labels and, (3) combine the generated labels with the previously available high confidence hand-labeled dataset. This assimilated dataset is used for the next round of training ensemble models and the cyclical process is repeated until the performance improvement plateaus. We post process our results with Conditional Random Fields. Our approach sets a new state-of-the-art on the Sentinel-1 dataset with 0.7654 IoU, an impressive improvement over the 0.60 IoU baseline. Our method, which we release with all the code and models, can also be used as an open science benchmark for the Sentinel-1 dataset.
AdaMatch: A Unified Approach to Semi-Supervised Learning and Domain Adaptation
We extend semi-supervised learning to the problem of domain adaptation to learn significantly higher-accuracy models that train on one data distribution and test on a different one. With the goal of generality, we introduce AdaMatch, a method that unifies the tasks of unsupervised domain adaptation (UDA), semi-supervised learning (SSL), and semi-supervised domain adaptation (SSDA). In an extensive experimental study, we compare its behavior with respective state-of-the-art techniques from SSL, SSDA, and UDA on vision classification tasks. We find AdaMatch either matches or significantly exceeds the state-of-the-art in each case using the same hyper-parameters regardless of the dataset or task. For example, AdaMatch nearly doubles the accuracy compared to that of the prior state-of-the-art on the UDA task for DomainNet and even exceeds the accuracy of the prior state-of-the-art obtained with pre-training by 6.4% when AdaMatch is trained completely from scratch. Furthermore, by providing AdaMatch with just one labeled example per class from the target domain (i.e., the SSDA setting), we increase the target accuracy by an additional 6.1%, and with 5 labeled examples, by 13.6%.
Hierarchical Point-based Active Learning for Semi-supervised Point Cloud Semantic Segmentation
Impressive performance on point cloud semantic segmentation has been achieved by fully-supervised methods with large amounts of labelled data. As it is labour-intensive to acquire large-scale point cloud data with point-wise labels, many attempts have been made to explore learning 3D point cloud segmentation with limited annotations. Active learning is one of the effective strategies to achieve this purpose but is still under-explored. The most recent methods of this kind measure the uncertainty of each pre-divided region for manual labelling but they suffer from redundant information and require additional efforts for region division. This paper aims at addressing this issue by developing a hierarchical point-based active learning strategy. Specifically, we measure the uncertainty for each point by a hierarchical minimum margin uncertainty module which considers the contextual information at multiple levels. Then, a feature-distance suppression strategy is designed to select important and representative points for manual labelling. Besides, to better exploit the unlabelled data, we build a semi-supervised segmentation framework based on our active strategy. Extensive experiments on the S3DIS and ScanNetV2 datasets demonstrate that the proposed framework achieves 96.5% and 100% performance of fully-supervised baseline with only 0.07% and 0.1% training data, respectively, outperforming the state-of-the-art weakly-supervised and active learning methods. The code will be available at https://github.com/SmiletoE/HPAL.
Guided Point Contrastive Learning for Semi-supervised Point Cloud Semantic Segmentation
Rapid progress in 3D semantic segmentation is inseparable from the advances of deep network models, which highly rely on large-scale annotated data for training. To address the high cost and challenges of 3D point-level labeling, we present a method for semi-supervised point cloud semantic segmentation to adopt unlabeled point clouds in training to boost the model performance. Inspired by the recent contrastive loss in self-supervised tasks, we propose the guided point contrastive loss to enhance the feature representation and model generalization ability in semi-supervised setting. Semantic predictions on unlabeled point clouds serve as pseudo-label guidance in our loss to avoid negative pairs in the same category. Also, we design the confidence guidance to ensure high-quality feature learning. Besides, a category-balanced sampling strategy is proposed to collect positive and negative samples to mitigate the class imbalance problem. Extensive experiments on three datasets (ScanNet V2, S3DIS, and SemanticKITTI) show the effectiveness of our semi-supervised method to improve the prediction quality with unlabeled data.
