Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLearning in Sparse Rewards settings through Quality-Diversity algorithms
In the Reinforcement Learning (RL) framework, the learning is guided through a reward signal. This means that in situations of sparse rewards the agent has to focus on exploration, in order to discover which action, or set of actions leads to the reward. RL agents usually struggle with this. Exploration is the focus of Quality-Diversity (QD) methods. In this thesis, we approach the problem of sparse rewards with these algorithms, and in particular with Novelty Search (NS). This is a method that only focuses on the diversity of the possible policies behaviors. The first part of the thesis focuses on learning a representation of the space in which the diversity of the policies is evaluated. In this regard, we propose the TAXONS algorithm, a method that learns a low-dimensional representation of the search space through an AutoEncoder. While effective, TAXONS still requires information on when to capture the observation used to learn said space. For this, we study multiple ways, and in particular the signature transform, to encode information about the whole trajectory of observations. The thesis continues with the introduction of the SERENE algorithm, a method that can efficiently focus on the interesting parts of the search space. This method separates the exploration of the search space from the exploitation of the reward through a two-alternating-steps approach. The exploration is performed through NS. Any discovered reward is then locally exploited through emitters. The third and final contribution combines TAXONS and SERENE into a single approach: STAX. Throughout this thesis, we introduce methods that lower the amount of prior information needed in sparse rewards settings. These contributions are a promising step towards the development of methods that can autonomously explore and find high-performance policies in a variety of sparse rewards settings.
Tiny Transformers for Environmental Sound Classification at the Edge
With the growth of the Internet of Things and the rise of Big Data, data processing and machine learning applications are being moved to cheap and low size, weight, and power (SWaP) devices at the edge, often in the form of mobile phones, embedded systems, or microcontrollers. The field of Cyber-Physical Measurements and Signature Intelligence (MASINT) makes use of these devices to analyze and exploit data in ways not otherwise possible, which results in increased data quality, increased security, and decreased bandwidth. However, methods to train and deploy models at the edge are limited, and models with sufficient accuracy are often too large for the edge device. Therefore, there is a clear need for techniques to create efficient AI/ML at the edge. This work presents training techniques for audio models in the field of environmental sound classification at the edge. Specifically, we design and train Transformers to classify office sounds in audio clips. Results show that a BERT-based Transformer, trained on Mel spectrograms, can outperform a CNN using 99.85% fewer parameters. To achieve this result, we first tested several audio feature extraction techniques designed for Transformers, using ESC-50 for evaluation, along with various augmentations. Our final model outperforms the state-of-the-art MFCC-based CNN on the office sounds dataset, using just over 6,000 parameters -- small enough to run on a microcontroller.
Extracting SASI signatures from Gravitational Waves of Core-Collapse Supernovae using the Hilbert-Huang Transform
Core collapse supernovae are among the most energetic astrophysical events in the Universe. Despite huge efforts on understanding the main ingredients triggering such explosions, we still lack of compelling evidences for the precise mechanism driving those phenomena. They are expected to produce gravitational waves due to asymmetric mass motions in the collapsing core, and emit in the meanwhile neutrinos as a result of the interactions in their high-density environment. The combination of these two cosmic messengers can provide a unique probe to study the inner engine of these processes and unveil the explosion mechanism. Among the possible detectable signature, standing accretion shock instabilities (SASI) are particularly relevant in this context as they establish a direct connection between gravitational wave emission and the outcoming neutrino flux. In this work, Hilbert-Huang transform is applied to a selected sample of 3D numerical simulations, with the aim of identifying SASI contribution and extract its instantaneous frequency. The performance of the method is evaluated in the context of Einstein Telescope.
Synthesis of 3D on-air signatures with the Sigma-Lognormal model
Signature synthesis is a computation technique that generates artificial specimens which can support decision making in automatic signature verification. A lot of work has been dedicated to this subject, which centres on synthesizing dynamic and static two-dimensional handwriting on canvas. This paper proposes a framework to generate synthetic 3D on-air signatures exploiting the lognormality principle, which mimics the complex neuromotor control processes at play as the fingertip moves. Addressing the usual cases involving the development of artificial individuals and duplicated samples, this paper contributes to the synthesis of: (1) the trajectory and velocity of entirely 3D new signatures; (2) kinematic information when only the 3D trajectory of the signature is known, and (3) duplicate samples of 3D real signatures. Validation was conducted by generating synthetic 3D signature databases mimicking real ones and showing that automatic signature verifications of genuine and skilled forgeries report performances similar to those of real and synthetic databases. We also observed that training 3D automatic signature verifiers with duplicates can reduce errors. We further demonstrated that our proposal is also valid for synthesizing 3D air writing and gestures. Finally, a perception test confirmed the human likeness of the generated specimens. The databases generated are publicly available, only for research purposes, at .
SigStyle: Signature Style Transfer via Personalized Text-to-Image Models
Style transfer enables the seamless integration of artistic styles from a style image into a content image, resulting in visually striking and aesthetically enriched outputs. Despite numerous advances in this field, existing methods did not explicitly focus on the signature style, which represents the distinct and recognizable visual traits of the image such as geometric and structural patterns, color palettes and brush strokes etc. In this paper, we introduce SigStyle, a framework that leverages the semantic priors that embedded in a personalized text-to-image diffusion model to capture the signature style representation. This style capture process is powered by a hypernetwork that efficiently fine-tunes the diffusion model for any given single style image. Style transfer then is conceptualized as the reconstruction process of content image through learned style tokens from the personalized diffusion model. Additionally, to ensure the content consistency throughout the style transfer process, we introduce a time-aware attention swapping technique that incorporates content information from the original image into the early denoising steps of target image generation. Beyond enabling high-quality signature style transfer across a wide range of styles, SigStyle supports multiple interesting applications, such as local style transfer, texture transfer, style fusion and style-guided text-to-image generation. Quantitative and qualitative evaluations demonstrate our approach outperforms existing style transfer methods for recognizing and transferring the signature styles.
AnyLogo: Symbiotic Subject-Driven Diffusion System with Gemini Status
Diffusion models have made compelling progress on facilitating high-throughput daily production. Nevertheless, the appealing customized requirements are remain suffered from instance-level finetuning for authentic fidelity. Prior zero-shot customization works achieve the semantic consistence through the condensed injection of identity features, while addressing detailed low-level signatures through complex model configurations and subject-specific fabrications, which significantly break the statistical coherence within the overall system and limit the applicability across various scenarios. To facilitate the generic signature concentration with rectified efficiency, we present AnyLogo, a zero-shot region customizer with remarkable detail consistency, building upon the symbiotic diffusion system with eliminated cumbersome designs. Streamlined as vanilla image generation, we discern that the rigorous signature extraction and creative content generation are promisingly compatible and can be systematically recycled within a single denoising model. In place of the external configurations, the gemini status of the denoising model promote the reinforced subject transmission efficiency and disentangled semantic-signature space with continuous signature decoration. Moreover, the sparse recycling paradigm is adopted to prevent the duplicated risk with compressed transmission quota for diversified signature stimulation. Extensive experiments on constructed logo-level benchmarks demonstrate the effectiveness and practicability of our methods.
Rotation, Scaling and Translation Analysis of Biometric Signature Templates
Biometric authentication systems that make use of signature verification methods often render optimum performance only under limited and restricted conditions. Such methods utilize several training samples so as to achieve high accuracy. Moreover, several constraints are imposed on the end-user so that the system may work optimally, and as expected. For example, the user is made to sign within a small box, in order to limit their signature to a predefined set of dimensions, thus eliminating scaling. Moreover, the angular rotation with respect to the referenced signature that will be inadvertently introduced as human error, hampers performance of biometric signature verification systems. To eliminate this, traditionally, a user is asked to sign exactly on top of a reference line. In this paper, we propose a robust system that optimizes the signature obtained from the user for a large range of variation in Rotation-Scaling-Translation (RST) and resolves these error parameters in the user signature according to the reference signature stored in the database.
Offline Signature Verification on Real-World Documents
Research on offline signature verification has explored a large variety of methods on multiple signature datasets, which are collected under controlled conditions. However, these datasets may not fully reflect the characteristics of the signatures in some practical use cases. Real-world signatures extracted from the formal documents may contain different types of occlusions, for example, stamps, company seals, ruling lines, and signature boxes. Moreover, they may have very high intra-class variations, where even genuine signatures resemble forgeries. In this paper, we address a real-world writer independent offline signature verification problem, in which, a bank's customers' transaction request documents that contain their occluded signatures are compared with their clean reference signatures. Our proposed method consists of two main components, a stamp cleaning method based on CycleGAN and signature representation based on CNNs. We extensively evaluate different verification setups, fine-tuning strategies, and signature representation approaches to have a thorough analysis of the problem. Moreover, we conduct a human evaluation to show the challenging nature of the problem. We run experiments both on our custom dataset, as well as on the publicly available Tobacco-800 dataset. The experimental results validate the difficulty of offline signature verification on real-world documents. However, by employing the stamp cleaning process, we improve the signature verification performance significantly.
Fourier Transformer: Fast Long Range Modeling by Removing Sequence Redundancy with FFT Operator
The transformer model is known to be computationally demanding, and prohibitively costly for long sequences, as the self-attention module uses a quadratic time and space complexity with respect to sequence length. Many researchers have focused on designing new forms of self-attention or introducing new parameters to overcome this limitation, however a large portion of them prohibits the model to inherit weights from large pretrained models. In this work, the transformer's inefficiency has been taken care of from another perspective. We propose Fourier Transformer, a simple yet effective approach by progressively removing redundancies in hidden sequence using the ready-made Fast Fourier Transform (FFT) operator to perform Discrete Cosine Transformation (DCT). Fourier Transformer is able to significantly reduce computational costs while retain the ability to inherit from various large pretrained models. Experiments show that our model achieves state-of-the-art performances among all transformer-based models on the long-range modeling benchmark LRA with significant improvement in both speed and space. For generative seq-to-seq tasks including CNN/DailyMail and ELI5, by inheriting the BART weights our model outperforms the standard BART and other efficient models. Our code is publicly available at \url{https://github.com/LUMIA-Group/FourierTransformer}
Patch Is Not All You Need
Vision Transformers have achieved great success in computer visions, delivering exceptional performance across various tasks. However, their inherent reliance on sequential input enforces the manual partitioning of images into patch sequences, which disrupts the image's inherent structural and semantic continuity. To handle this, we propose a novel Pattern Transformer (Patternformer) to adaptively convert images to pattern sequences for Transformer input. Specifically, we employ the Convolutional Neural Network to extract various patterns from the input image, with each channel representing a unique pattern that is fed into the succeeding Transformer as a visual token. By enabling the network to optimize these patterns, each pattern concentrates on its local region of interest, thereby preserving its intrinsic structural and semantic information. Only employing the vanilla ResNet and Transformer, we have accomplished state-of-the-art performance on CIFAR-10 and CIFAR-100, and have achieved competitive results on ImageNet.
HodgeFormer: Transformers for Learnable Operators on Triangular Meshes through Data-Driven Hodge Matrices
Currently, prominent Transformer architectures applied on graphs and meshes for shape analysis tasks employ traditional attention layers that heavily utilize spectral features requiring costly eigenvalue decomposition-based methods. To encode the mesh structure, these methods derive positional embeddings, that heavily rely on eigenvalue decomposition based operations, e.g. on the Laplacian matrix, or on heat-kernel signatures, which are then concatenated to the input features. This paper proposes a novel approach inspired by the explicit construction of the Hodge Laplacian operator in Discrete Exterior Calculus as a product of discrete Hodge operators and exterior derivatives, i.e. (L := star_0^{-1} d_0^T star_1 d_0). We adjust the Transformer architecture in a novel deep learning layer that utilizes the multi-head attention mechanism to approximate Hodge matrices star_0, star_1 and star_2 and learn families of discrete operators L that act on mesh vertices, edges and faces. Our approach results in a computationally-efficient architecture that achieves comparable performance in mesh segmentation and classification tasks, through a direct learning framework, while eliminating the need for costly eigenvalue decomposition operations or complex preprocessing operations.
Online Gesture Recognition using Transformer and Natural Language Processing
The Transformer architecture is shown to provide a powerful machine transduction framework for online handwritten gestures corresponding to glyph strokes of natural language sentences. The attention mechanism is successfully used to create latent representations of an end-to-end encoder-decoder model, solving multi-level segmentation while also learning some language features and syntax rules. The additional use of a large decoding space with some learned Byte-Pair-Encoding (BPE) is shown to provide robustness to ablated inputs and syntax rules. The encoder stack was directly fed with spatio-temporal data tokens potentially forming an infinitely large input vocabulary, an approach that finds applications beyond that of this work. Encoder transfer learning capabilities is also demonstrated on several languages resulting in faster optimisation and shared parameters. A new supervised dataset of online handwriting gestures suitable for generic handwriting recognition tasks was used to successfully train a small transformer model to an average normalised Levenshtein accuracy of 96% on English or German sentences and 94% in French.
Learning the Dynamics of Sparsely Observed Interacting Systems
We address the problem of learning the dynamics of an unknown non-parametric system linking a target and a feature time series. The feature time series is measured on a sparse and irregular grid, while we have access to only a few points of the target time series. Once learned, we can use these dynamics to predict values of the target from the previous values of the feature time series. We frame this task as learning the solution map of a controlled differential equation (CDE). By leveraging the rich theory of signatures, we are able to cast this non-linear problem as a high-dimensional linear regression. We provide an oracle bound on the prediction error which exhibits explicit dependencies on the individual-specific sampling schemes. Our theoretical results are illustrated by simulations which show that our method outperforms existing algorithms for recovering the full time series while being computationally cheap. We conclude by demonstrating its potential on real-world epidemiological data.
The Stable Signature: Rooting Watermarks in Latent Diffusion Models
Generative image modeling enables a wide range of applications but raises ethical concerns about responsible deployment. This paper introduces an active strategy combining image watermarking and Latent Diffusion Models. The goal is for all generated images to conceal an invisible watermark allowing for future detection and/or identification. The method quickly fine-tunes the latent decoder of the image generator, conditioned on a binary signature. A pre-trained watermark extractor recovers the hidden signature from any generated image and a statistical test then determines whether it comes from the generative model. We evaluate the invisibility and robustness of the watermarks on a variety of generation tasks, showing that Stable Signature works even after the images are modified. For instance, it detects the origin of an image generated from a text prompt, then cropped to keep 10% of the content, with 90+% accuracy at a false positive rate below 10^{-6}.
TransTIC: Transferring Transformer-based Image Compression from Human Perception to Machine Perception
This work aims for transferring a Transformer-based image compression codec from human perception to machine perception without fine-tuning the codec. We propose a transferable Transformer-based image compression framework, termed TransTIC. Inspired by visual prompt tuning, TransTIC adopts an instance-specific prompt generator to inject instance-specific prompts to the encoder and task-specific prompts to the decoder. Extensive experiments show that our proposed method is capable of transferring the base codec to various machine tasks and outperforms the competing methods significantly. To our best knowledge, this work is the first attempt to utilize prompting on the low-level image compression task.
Video Signature: In-generation Watermarking for Latent Video Diffusion Models
The rapid development of Artificial Intelligence Generated Content (AIGC) has led to significant progress in video generation but also raises serious concerns about intellectual property protection and reliable content tracing. Watermarking is a widely adopted solution to this issue, but existing methods for video generation mainly follow a post-generation paradigm, which introduces additional computational overhead and often fails to effectively balance the trade-off between video quality and watermark extraction. To address these issues, we propose Video Signature (VIDSIG), an in-generation watermarking method for latent video diffusion models, which enables implicit and adaptive watermark integration during generation. Specifically, we achieve this by partially fine-tuning the latent decoder, where Perturbation-Aware Suppression (PAS) pre-identifies and freezes perceptually sensitive layers to preserve visual quality. Beyond spatial fidelity, we further enhance temporal consistency by introducing a lightweight Temporal Alignment module that guides the decoder to generate coherent frame sequences during fine-tuning. Experimental results show that VIDSIG achieves the best overall performance in watermark extraction, visual quality, and generation efficiency. It also demonstrates strong robustness against both spatial and temporal tampering, highlighting its practicality in real-world scenarios. Our code is available at https://github.com/hardenyu21/Video-Signature{here}
A Transformer Architecture for Online Gesture Recognition of Mathematical Expressions
The Transformer architecture is shown to provide a powerful framework as an end-to-end model for building expression trees from online handwritten gestures corresponding to glyph strokes. In particular, the attention mechanism was successfully used to encode, learn and enforce the underlying syntax of expressions creating latent representations that are correctly decoded to the exact mathematical expression tree, providing robustness to ablated inputs and unseen glyphs. For the first time, the encoder is fed with spatio-temporal data tokens potentially forming an infinitely large vocabulary, which finds applications beyond that of online gesture recognition. A new supervised dataset of online handwriting gestures is provided for training models on generic handwriting recognition tasks and a new metric is proposed for the evaluation of the syntactic correctness of the output expression trees. A small Transformer model suitable for edge inference was successfully trained to an average normalised Levenshtein accuracy of 94%, resulting in valid postfix RPN tree representation for 94% of predictions.
WriteViT: Handwritten Text Generation with Vision Transformer
Humans can quickly generalize handwriting styles from a single example by intuitively separating content from style. Machines, however, struggle with this task, especially in low-data settings, often missing subtle spatial and stylistic cues. Motivated by this gap, we introduce WriteViT, a one-shot handwritten text synthesis framework that incorporates Vision Transformers (ViT), a family of models that have shown strong performance across various computer vision tasks. WriteViT integrates a ViT-based Writer Identifier for extracting style embeddings, a multi-scale generator built with Transformer encoder-decoder blocks enhanced by conditional positional encoding (CPE), and a lightweight ViT-based recognizer. While previous methods typically rely on CNNs or CRNNs, our design leverages transformers in key components to better capture both fine-grained stroke details and higher-level style information. Although handwritten text synthesis has been widely explored, its application to Vietnamese -- a language rich in diacritics and complex typography -- remains limited. Experiments on Vietnamese and English datasets demonstrate that WriteViT produces high-quality, style-consistent handwriting while maintaining strong recognition performance in low-resource scenarios. These results highlight the promise of transformer-based designs for multilingual handwriting generation and efficient style adaptation.
Multi-rate adaptive transform coding for video compression
Contemporary lossy image and video coding standards rely on transform coding, the process through which pixels are mapped to an alternative representation to facilitate efficient data compression. Despite impressive performance of end-to-end optimized compression with deep neural networks, the high computational and space demands of these models has prevented them from superseding the relatively simple transform coding found in conventional video codecs. In this study, we propose learned transforms and entropy coding that may either serve as (non)linear drop-in replacements, or enhancements for linear transforms in existing codecs. These transforms can be multi-rate, allowing a single model to operate along the entire rate-distortion curve. To demonstrate the utility of our framework, we augmented the DCT with learned quantization matrices and adaptive entropy coding to compress intra-frame AV1 block prediction residuals. We report substantial BD-rate and perceptual quality improvements over more complex nonlinear transforms at a fraction of the computational cost.
Signing the Supermask: Keep, Hide, Invert
The exponential growth in numbers of parameters of neural networks over the past years has been accompanied by an increase in performance across several fields. However, due to their sheer size, the networks not only became difficult to interpret but also problematic to train and use in real-world applications, since hardware requirements increased accordingly. Tackling both issues, we present a novel approach that either drops a neural network's initial weights or inverts their respective sign. Put simply, a network is trained by weight selection and inversion without changing their absolute values. Our contribution extends previous work on masking by additionally sign-inverting the initial weights and follows the findings of the Lottery Ticket Hypothesis. Through this extension and adaptations of initialization methods, we achieve a pruning rate of up to 99%, while still matching or exceeding the performance of various baseline and previous models. Our approach has two main advantages. First, and most notable, signed Supermask models drastically simplify a model's structure, while still performing well on given tasks. Second, by reducing the neural network to its very foundation, we gain insights into which weights matter for performance. The code is available on GitHub.
B-cos Networks: Alignment is All We Need for Interpretability
We present a new direction for increasing the interpretability of deep neural networks (DNNs) by promoting weight-input alignment during training. For this, we propose to replace the linear transforms in DNNs by our B-cos transform. As we show, a sequence (network) of such transforms induces a single linear transform that faithfully summarises the full model computations. Moreover, the B-cos transform introduces alignment pressure on the weights during optimisation. As a result, those induced linear transforms become highly interpretable and align with task-relevant features. Importantly, the B-cos transform is designed to be compatible with existing architectures and we show that it can easily be integrated into common models such as VGGs, ResNets, InceptionNets, and DenseNets, whilst maintaining similar performance on ImageNet. The resulting explanations are of high visual quality and perform well under quantitative metrics for interpretability. Code available at https://www.github.com/moboehle/B-cos.
RobustFormer: Noise-Robust Pre-training for images and videos
While deep learning models are powerful tools that revolutionized many areas, they are also vulnerable to noise as they rely heavily on learning patterns and features from the exact details of the clean data. Transformers, which have become the backbone of modern vision models, are no exception. Current Discrete Wavelet Transforms (DWT) based methods do not benefit from masked autoencoder (MAE) pre-training since the inverse DWT (iDWT) introduced in these approaches is computationally inefficient and lacks compatibility with video inputs in transformer architectures. In this work, we present RobustFormer, a method that overcomes these limitations by enabling noise-robust pre-training for both images and videos; improving the efficiency of DWT-based methods by removing the need for computationally iDWT steps and simplifying the attention mechanism. To our knowledge, the proposed method is the first DWT-based method compatible with video inputs and masked pre-training. Our experiments show that MAE-based pre-training allows us to bypass the iDWT step, greatly reducing computation. Through extensive tests on benchmark datasets, RobustFormer achieves state-of-the-art results for both image and video tasks.
WavSpA: Wavelet Space Attention for Boosting Transformers' Long Sequence Learning Ability
Transformer and its variants are fundamental neural architectures in deep learning. Recent works show that learning attention in the Fourier space can improve the long sequence learning capability of Transformers. We argue that wavelet transform shall be a better choice because it captures both position and frequency information with linear time complexity. Therefore, in this paper, we systematically study the synergy between wavelet transform and Transformers. We propose Wavelet Space Attention (WavSpA) that facilitates attention learning in a learnable wavelet coefficient space which replaces the attention in Transformers by (1) applying forward wavelet transform to project the input sequences to multi-resolution bases, (2) conducting attention learning in the wavelet coefficient space, and (3) reconstructing the representation in input space via backward wavelet transform. Extensive experiments on the Long Range Arena demonstrate that learning attention in the wavelet space using either fixed or adaptive wavelets can consistently improve Transformer's performance and also significantly outperform learning in Fourier space. We further show our method can enhance Transformer's reasoning extrapolation capability over distance on the LEGO chain-of-reasoning task.
Extensions on low-complexity DCT approximations for larger blocklengths based on minimal angle similarity
The discrete cosine transform (DCT) is a central tool for image and video coding because it can be related to the Karhunen-Lo\`eve transform (KLT), which is the optimal transform in terms of retained transform coefficients and data decorrelation. In this paper, we introduce 16-, 32-, and 64-point low-complexity DCT approximations by minimizing individually the angle between the rows of the exact DCT matrix and the matrix induced by the approximate transforms. According to some classical figures of merit, the proposed transforms outperformed the approximations for the DCT already known in the literature. Fast algorithms were also developed for the low-complexity transforms, asserting a good balance between the performance and its computational cost. Practical applications in image encoding showed the relevance of the transforms in this context. In fact, the experiments showed that the proposed transforms had better results than the known approximations in the literature for the cases of 16, 32, and 64 blocklength.
Token Transformation Matters: Towards Faithful Post-hoc Explanation for Vision Transformer
While Transformers have rapidly gained popularity in various computer vision applications, post-hoc explanations of their internal mechanisms remain largely unexplored. Vision Transformers extract visual information by representing image regions as transformed tokens and integrating them via attention weights. However, existing post-hoc explanation methods merely consider these attention weights, neglecting crucial information from the transformed tokens, which fails to accurately illustrate the rationales behind the models' predictions. To incorporate the influence of token transformation into interpretation, we propose TokenTM, a novel post-hoc explanation method that utilizes our introduced measurement of token transformation effects. Specifically, we quantify token transformation effects by measuring changes in token lengths and correlations in their directions pre- and post-transformation. Moreover, we develop initialization and aggregation rules to integrate both attention weights and token transformation effects across all layers, capturing holistic token contributions throughout the model. Experimental results on segmentation and perturbation tests demonstrate the superiority of our proposed TokenTM compared to state-of-the-art Vision Transformer explanation methods.
BT^2: Backward-compatible Training with Basis Transformation
Modern retrieval system often requires recomputing the representation of every piece of data in the gallery when updating to a better representation model. This process is known as backfilling and can be especially costly in the real world where the gallery often contains billions of samples. Recently, researchers have proposed the idea of Backward Compatible Training (BCT) where the new representation model can be trained with an auxiliary loss to make it backward compatible with the old representation. In this way, the new representation can be directly compared with the old representation, in principle avoiding the need for any backfilling. However, followup work shows that there is an inherent tradeoff where a backward compatible representation model cannot simultaneously maintain the performance of the new model itself. This paper reports our ``not-so-surprising'' finding that adding extra dimensions to the representation can help here. However, we also found that naively increasing the dimension of the representation did not work. To deal with this, we propose Backward-compatible Training with a novel Basis Transformation (BT^2). A basis transformation (BT) is basically a learnable set of parameters that applies an orthonormal transformation. Such a transformation possesses an important property whereby the original information contained in its input is retained in its output. We show in this paper how a BT can be utilized to add only the necessary amount of additional dimensions. We empirically verify the advantage of BT^2 over other state-of-the-art methods in a wide range of settings. We then further extend BT^2 to other challenging yet more practical settings, including significant change in model architecture (CNN to Transformers), modality change, and even a series of updates in the model architecture mimicking the evolution of deep learning models.
Modulate Your Spectrum in Self-Supervised Learning
Whitening loss offers a theoretical guarantee against feature collapse in self-supervised learning (SSL) with joint embedding architectures. Typically, it involves a hard whitening approach, transforming the embedding and applying loss to the whitened output. In this work, we introduce Spectral Transformation (ST), a framework to modulate the spectrum of embedding and to seek for functions beyond whitening that can avoid dimensional collapse. We show that whitening is a special instance of ST by definition, and our empirical investigations unveil other ST instances capable of preventing collapse. Additionally, we propose a novel ST instance named IterNorm with trace loss (INTL). Theoretical analysis confirms INTL's efficacy in preventing collapse and modulating the spectrum of embedding toward equal-eigenvalues during optimization. Our experiments on ImageNet classification and COCO object detection demonstrate INTL's potential in learning superior representations. The code is available at https://github.com/winci-ai/INTL.
IlluSign: Illustrating Sign Language Videos by Leveraging the Attention Mechanism
Sign languages are dynamic visual languages that involve hand gestures, in combination with non manual elements such as facial expressions. While video recordings of sign language are commonly used for education and documentation, the dynamic nature of signs can make it challenging to study them in detail, especially for new learners and educators. This work aims to convert sign language video footage into static illustrations, which serve as an additional educational resource to complement video content. This process is usually done by an artist, and is therefore quite costly. We propose a method that illustrates sign language videos by leveraging generative models' ability to understand both the semantic and geometric aspects of images. Our approach focuses on transferring a sketch like illustration style to video footage of sign language, combining the start and end frames of a sign into a single illustration, and using arrows to highlight the hand's direction and motion. While many style transfer methods address domain adaptation at varying levels of abstraction, applying a sketch like style to sign languages, especially for hand gestures and facial expressions, poses a significant challenge. To tackle this, we intervene in the denoising process of a diffusion model, injecting style as keys and values into high resolution attention layers, and fusing geometric information from the image and edges as queries. For the final illustration, we use the attention mechanism to combine the attention weights from both the start and end illustrations, resulting in a soft combination. Our method offers a cost effective solution for generating sign language illustrations at inference time, addressing the lack of such resources in educational materials.
SignRep: Enhancing Self-Supervised Sign Representations
Sign language representation learning presents unique challenges due to the complex spatio-temporal nature of signs and the scarcity of labeled datasets. Existing methods often rely either on models pre-trained on general visual tasks, that lack sign-specific features, or use complex multimodal and multi-branch architectures. To bridge this gap, we introduce a scalable, self-supervised framework for sign representation learning. We leverage important inductive (sign) priors during the training of our RGB model. To do this, we leverage simple but important cues based on skeletons while pretraining a masked autoencoder. These sign specific priors alongside feature regularization and an adversarial style agnostic loss provide a powerful backbone. Notably, our model does not require skeletal keypoints during inference, avoiding the limitations of keypoint-based models during downstream tasks. When finetuned, we achieve state-of-the-art performance for sign recognition on the WLASL, ASL-Citizen and NMFs-CSL datasets, using a simpler architecture and with only a single-modality. Beyond recognition, our frozen model excels in sign dictionary retrieval and sign translation, surpassing standard MAE pretraining and skeletal-based representations in retrieval. It also reduces computational costs for training existing sign translation models while maintaining strong performance on Phoenix2014T, CSL-Daily and How2Sign.
A Signer-Invariant Conformer and Multi-Scale Fusion Transformer for Continuous Sign Language Recognition
Continuous Sign Language Recognition (CSLR) faces multiple challenges, including significant inter-signer variability and poor generalization to novel sentence structures. Traditional solutions frequently fail to handle these issues efficiently. For overcoming these constraints, we propose a dual-architecture framework. For the Signer-Independent (SI) challenge, we propose a Signer-Invariant Conformer that combines convolutions with multi-head self-attention to learn robust, signer-agnostic representations from pose-based skeletal keypoints. For the Unseen-Sentences (US) task, we designed a Multi-Scale Fusion Transformer with a novel dual-path temporal encoder that captures both fine-grained posture dynamics, enabling the model's ability to comprehend novel grammatical compositions. Experiments on the challenging Isharah-1000 dataset establish a new standard for both CSLR benchmarks. The proposed conformer architecture achieves a Word Error Rate (WER) of 13.07% on the SI challenge, a reduction of 13.53% from the state-of-the-art. On the US task, the transformer model scores a WER of 47.78%, surpassing previous work. In the SignEval 2025 CSLR challenge, our team placed 2nd in the US task and 4th in the SI task, demonstrating the performance of these models. The findings validate our key hypothesis: that developing task-specific networks designed for the particular challenges of CSLR leads to considerable performance improvements and establishes a new baseline for further research. The source code is available at: https://github.com/rezwanh001/MSLR-Pose86K-CSLR-Isharah.
Sheet Music Transformer: End-To-End Optical Music Recognition Beyond Monophonic Transcription
State-of-the-art end-to-end Optical Music Recognition (OMR) has, to date, primarily been carried out using monophonic transcription techniques to handle complex score layouts, such as polyphony, often by resorting to simplifications or specific adaptations. Despite their efficacy, these approaches imply challenges related to scalability and limitations. This paper presents the Sheet Music Transformer, the first end-to-end OMR model designed to transcribe complex musical scores without relying solely on monophonic strategies. Our model employs a Transformer-based image-to-sequence framework that predicts score transcriptions in a standard digital music encoding format from input images. Our model has been tested on two polyphonic music datasets and has proven capable of handling these intricate music structures effectively. The experimental outcomes not only indicate the competence of the model, but also show that it is better than the state-of-the-art methods, thus contributing to advancements in end-to-end OMR transcription.
Efficient Diffusion Transformer with Step-wise Dynamic Attention Mediators
This paper identifies significant redundancy in the query-key interactions within self-attention mechanisms of diffusion transformer models, particularly during the early stages of denoising diffusion steps. In response to this observation, we present a novel diffusion transformer framework incorporating an additional set of mediator tokens to engage with queries and keys separately. By modulating the number of mediator tokens during the denoising generation phases, our model initiates the denoising process with a precise, non-ambiguous stage and gradually transitions to a phase enriched with detail. Concurrently, integrating mediator tokens simplifies the attention module's complexity to a linear scale, enhancing the efficiency of global attention processes. Additionally, we propose a time-step dynamic mediator token adjustment mechanism that further decreases the required computational FLOPs for generation, simultaneously facilitating the generation of high-quality images within the constraints of varied inference budgets. Extensive experiments demonstrate that the proposed method can improve the generated image quality while also reducing the inference cost of diffusion transformers. When integrated with the recent work SiT, our method achieves a state-of-the-art FID score of 2.01. The source code is available at https://github.com/LeapLabTHU/Attention-Mediators.
Geo-Sign: Hyperbolic Contrastive Regularisation for Geometrically Aware Sign Language Translation
Recent progress in Sign Language Translation (SLT) has focussed primarily on improving the representational capacity of large language models to incorporate Sign Language features. This work explores an alternative direction: enhancing the geometric properties of skeletal representations themselves. We propose Geo-Sign, a method that leverages the properties of hyperbolic geometry to model the hierarchical structure inherent in sign language kinematics. By projecting skeletal features derived from Spatio-Temporal Graph Convolutional Networks (ST-GCNs) into the Poincar\'e ball model, we aim to create more discriminative embeddings, particularly for fine-grained motions like finger articulations. We introduce a hyperbolic projection layer, a weighted Fr\'echet mean aggregation scheme, and a geometric contrastive loss operating directly in hyperbolic space. These components are integrated into an end-to-end translation framework as a regularisation function, to enhance the representations within the language model. This work demonstrates the potential of hyperbolic geometry to improve skeletal representations for Sign Language Translation, improving on SOTA RGB methods while preserving privacy and improving computational efficiency. Code available here: https://github.com/ed-fish/geo-sign.
iTransformer: Inverted Transformers Are Effective for Time Series Forecasting
The recent boom of linear forecasting models questions the ongoing passion for architectural modifications of Transformer-based forecasters. These forecasters leverage Transformers to model the global dependencies over temporal tokens of time series, with each token formed by multiple variates of the same timestamp. However, Transformers are challenged in forecasting series with larger lookback windows due to performance degradation and computation explosion. Besides, the embedding for each temporal token fuses multiple variates that represent potential delayed events and distinct physical measurements, which may fail in learning variate-centric representations and result in meaningless attention maps. In this work, we reflect on the competent duties of Transformer components and repurpose the Transformer architecture without any modification to the basic components. We propose iTransformer that simply applies the attention and feed-forward network on the inverted dimensions. Specifically, the time points of individual series are embedded into variate tokens which are utilized by the attention mechanism to capture multivariate correlations; meanwhile, the feed-forward network is applied for each variate token to learn nonlinear representations. The iTransformer model achieves state-of-the-art on challenging real-world datasets, which further empowers the Transformer family with promoted performance, generalization ability across different variates, and better utilization of arbitrary lookback windows, making it a nice alternative as the fundamental backbone of time series forecasting. Code is available at this repository: https://github.com/thuml/iTransformer.
Tree-Ring Watermarks: Fingerprints for Diffusion Images that are Invisible and Robust
Watermarking the outputs of generative models is a crucial technique for tracing copyright and preventing potential harm from AI-generated content. In this paper, we introduce a novel technique called Tree-Ring Watermarking that robustly fingerprints diffusion model outputs. Unlike existing methods that perform post-hoc modifications to images after sampling, Tree-Ring Watermarking subtly influences the entire sampling process, resulting in a model fingerprint that is invisible to humans. The watermark embeds a pattern into the initial noise vector used for sampling. These patterns are structured in Fourier space so that they are invariant to convolutions, crops, dilations, flips, and rotations. After image generation, the watermark signal is detected by inverting the diffusion process to retrieve the noise vector, which is then checked for the embedded signal. We demonstrate that this technique can be easily applied to arbitrary diffusion models, including text-conditioned Stable Diffusion, as a plug-in with negligible loss in FID. Our watermark is semantically hidden in the image space and is far more robust than watermarking alternatives that are currently deployed. Code is available at github.com/YuxinWenRick/tree-ring-watermark.
Reduce Information Loss in Transformers for Pluralistic Image Inpainting
Transformers have achieved great success in pluralistic image inpainting recently. However, we find existing transformer based solutions regard each pixel as a token, thus suffer from information loss issue from two aspects: 1) They downsample the input image into much lower resolutions for efficiency consideration, incurring information loss and extra misalignment for the boundaries of masked regions. 2) They quantize 256^3 RGB pixels to a small number (such as 512) of quantized pixels. The indices of quantized pixels are used as tokens for the inputs and prediction targets of transformer. Although an extra CNN network is used to upsample and refine the low-resolution results, it is difficult to retrieve the lost information back.To keep input information as much as possible, we propose a new transformer based framework "PUT". Specifically, to avoid input downsampling while maintaining the computation efficiency, we design a patch-based auto-encoder P-VQVAE, where the encoder converts the masked image into non-overlapped patch tokens and the decoder recovers the masked regions from inpainted tokens while keeping the unmasked regions unchanged. To eliminate the information loss caused by quantization, an Un-Quantized Transformer (UQ-Transformer) is applied, which directly takes the features from P-VQVAE encoder as input without quantization and regards the quantized tokens only as prediction targets. Extensive experiments show that PUT greatly outperforms state-of-the-art methods on image fidelity, especially for large masked regions and complex large-scale datasets. Code is available at https://github.com/liuqk3/PUT
DETRs with Hybrid Matching
One-to-one set matching is a key design for DETR to establish its end-to-end capability, so that object detection does not require a hand-crafted NMS (non-maximum suppression) to remove duplicate detections. This end-to-end signature is important for the versatility of DETR, and it has been generalized to broader vision tasks. However, we note that there are few queries assigned as positive samples and the one-to-one set matching significantly reduces the training efficacy of positive samples. We propose a simple yet effective method based on a hybrid matching scheme that combines the original one-to-one matching branch with an auxiliary one-to-many matching branch during training. Our hybrid strategy has been shown to significantly improve accuracy. In inference, only the original one-to-one match branch is used, thus maintaining the end-to-end merit and the same inference efficiency of DETR. The method is named H-DETR, and it shows that a wide range of representative DETR methods can be consistently improved across a wide range of visual tasks, including DeformableDETR, PETRv2, PETR, and TransTrack, among others. The code is available at: https://github.com/HDETR
MaXsive: High-Capacity and Robust Training-Free Generative Image Watermarking in Diffusion Models
The great success of the diffusion model in image synthesis led to the release of gigantic commercial models, raising the issue of copyright protection and inappropriate content generation. Training-free diffusion watermarking provides a low-cost solution for these issues. However, the prior works remain vulnerable to rotation, scaling, and translation (RST) attacks. Although some methods employ meticulously designed patterns to mitigate this issue, they often reduce watermark capacity, which can result in identity (ID) collusion. To address these problems, we propose MaXsive, a training-free diffusion model generative watermarking technique that has high capacity and robustness. MaXsive best utilizes the initial noise to watermark the diffusion model. Moreover, instead of using a meticulously repetitive ring pattern, we propose injecting the X-shape template to recover the RST distortions. This design significantly increases robustness without losing any capacity, making ID collusion less likely to happen. The effectiveness of MaXsive has been verified on two well-known watermarking benchmarks under the scenarios of verification and identification.
HiT-SR: Hierarchical Transformer for Efficient Image Super-Resolution
Transformers have exhibited promising performance in computer vision tasks including image super-resolution (SR). However, popular transformer-based SR methods often employ window self-attention with quadratic computational complexity to window sizes, resulting in fixed small windows with limited receptive fields. In this paper, we present a general strategy to convert transformer-based SR networks to hierarchical transformers (HiT-SR), boosting SR performance with multi-scale features while maintaining an efficient design. Specifically, we first replace the commonly used fixed small windows with expanding hierarchical windows to aggregate features at different scales and establish long-range dependencies. Considering the intensive computation required for large windows, we further design a spatial-channel correlation method with linear complexity to window sizes, efficiently gathering spatial and channel information from hierarchical windows. Extensive experiments verify the effectiveness and efficiency of our HiT-SR, and our improved versions of SwinIR-Light, SwinIR-NG, and SRFormer-Light yield state-of-the-art SR results with fewer parameters, FLOPs, and faster speeds (sim7times).
Hot-Swap MarkBoard: An Efficient Black-box Watermarking Approach for Large-scale Model Distribution
Recently, Deep Learning (DL) models have been increasingly deployed on end-user devices as On-Device AI, offering improved efficiency and privacy. However, this deployment trend poses more serious Intellectual Property (IP) risks, as models are distributed on numerous local devices, making them vulnerable to theft and redistribution. Most existing ownership protection solutions (e.g., backdoor-based watermarking) are designed for cloud-based AI-as-a-Service (AIaaS) and are not directly applicable to large-scale distribution scenarios, where each user-specific model instance must carry a unique watermark. These methods typically embed a fixed watermark, and modifying the embedded watermark requires retraining the model. To address these challenges, we propose Hot-Swap MarkBoard, an efficient watermarking method. It encodes user-specific n-bit binary signatures by independently embedding multiple watermarks into a multi-branch Low-Rank Adaptation (LoRA) module, enabling efficient watermark customization without retraining through branch swapping. A parameter obfuscation mechanism further entangles the watermark weights with those of the base model, preventing removal without degrading model performance. The method supports black-box verification and is compatible with various model architectures and DL tasks, including classification, image generation, and text generation. Extensive experiments across three types of tasks and six backbone models demonstrate our method's superior efficiency and adaptability compared to existing approaches, achieving 100\% verification accuracy.
BlackMarks: Blackbox Multibit Watermarking for Deep Neural Networks
Deep Neural Networks have created a paradigm shift in our ability to comprehend raw data in various important fields ranging from computer vision and natural language processing to intelligence warfare and healthcare. While DNNs are increasingly deployed either in a white-box setting where the model internal is publicly known, or a black-box setting where only the model outputs are known, a practical concern is protecting the models against Intellectual Property (IP) infringement. We propose BlackMarks, the first end-to-end multi-bit watermarking framework that is applicable in the black-box scenario. BlackMarks takes the pre-trained unmarked model and the owner's binary signature as inputs and outputs the corresponding marked model with a set of watermark keys. To do so, BlackMarks first designs a model-dependent encoding scheme that maps all possible classes in the task to bit '0' and bit '1' by clustering the output activations into two groups. Given the owner's watermark signature (a binary string), a set of key image and label pairs are designed using targeted adversarial attacks. The watermark (WM) is then embedded in the prediction behavior of the target DNN by fine-tuning the model with generated WM key set. To extract the WM, the remote model is queried by the WM key images and the owner's signature is decoded from the corresponding predictions according to the designed encoding scheme. We perform a comprehensive evaluation of BlackMarks's performance on MNIST, CIFAR10, ImageNet datasets and corroborate its effectiveness and robustness. BlackMarks preserves the functionality of the original DNN and incurs negligible WM embedding runtime overhead as low as 2.054%.
Stable, Fast and Accurate: Kernelized Attention with Relative Positional Encoding
The attention module, which is a crucial component in Transformer, cannot scale efficiently to long sequences due to its quadratic complexity. Many works focus on approximating the dot-then-exponentiate softmax function in the original attention, leading to sub-quadratic or even linear-complexity Transformer architectures. However, we show that these methods cannot be applied to more powerful attention modules that go beyond the dot-then-exponentiate style, e.g., Transformers with relative positional encoding (RPE). Since in many state-of-the-art models, relative positional encoding is used as default, designing efficient Transformers that can incorporate RPE is appealing. In this paper, we propose a novel way to accelerate attention calculation for Transformers with RPE on top of the kernelized attention. Based upon the observation that relative positional encoding forms a Toeplitz matrix, we mathematically show that kernelized attention with RPE can be calculated efficiently using Fast Fourier Transform (FFT). With FFT, our method achieves O(nlog n) time complexity. Interestingly, we further demonstrate that properly using relative positional encoding can mitigate the training instability problem of vanilla kernelized attention. On a wide range of tasks, we empirically show that our models can be trained from scratch without any optimization issues. The learned model performs better than many efficient Transformer variants and is faster than standard Transformer in the long-sequence regime.
Power Transform Revisited: Numerically Stable, and Federated
Power transforms are popular parametric techniques for making data more Gaussian-like, and are widely used as preprocessing steps in statistical analysis and machine learning. However, we find that direct implementations of power transforms suffer from severe numerical instabilities, which can lead to incorrect results or even crashes. In this paper, we provide a comprehensive analysis of the sources of these instabilities and propose effective remedies. We further extend power transforms to the federated learning setting, addressing both numerical and distributional challenges that arise in this context. Experiments on real-world datasets demonstrate that our methods are both effective and robust, substantially improving stability compared to existing approaches.
Discovering Transferable Forensic Features for CNN-generated Images Detection
Visual counterfeits are increasingly causing an existential conundrum in mainstream media with rapid evolution in neural image synthesis methods. Though detection of such counterfeits has been a taxing problem in the image forensics community, a recent class of forensic detectors -- universal detectors -- are able to surprisingly spot counterfeit images regardless of generator architectures, loss functions, training datasets, and resolutions. This intriguing property suggests the possible existence of transferable forensic features (T-FF) in universal detectors. In this work, we conduct the first analytical study to discover and understand T-FF in universal detectors. Our contributions are 2-fold: 1) We propose a novel forensic feature relevance statistic (FF-RS) to quantify and discover T-FF in universal detectors and, 2) Our qualitative and quantitative investigations uncover an unexpected finding: color is a critical T-FF in universal detectors. Code and models are available at https://keshik6.github.io/transferable-forensic-features/
VDT: General-purpose Video Diffusion Transformers via Mask Modeling
This work introduces Video Diffusion Transformer (VDT), which pioneers the use of transformers in diffusion-based video generation. It features transformer blocks with modularized temporal and spatial attention modules to leverage the rich spatial-temporal representation inherited in transformers. We also propose a unified spatial-temporal mask modeling mechanism, seamlessly integrated with the model, to cater to diverse video generation scenarios. VDT offers several appealing benefits. 1) It excels at capturing temporal dependencies to produce temporally consistent video frames and even simulate the physics and dynamics of 3D objects over time. 2) It facilitates flexible conditioning information, \eg, simple concatenation in the token space, effectively unifying different token lengths and modalities. 3) Pairing with our proposed spatial-temporal mask modeling mechanism, it becomes a general-purpose video diffuser for harnessing a range of tasks, including unconditional generation, video prediction, interpolation, animation, and completion, etc. Extensive experiments on these tasks spanning various scenarios, including autonomous driving, natural weather, human action, and physics-based simulation, demonstrate the effectiveness of VDT. Additionally, we present comprehensive studies on how \model handles conditioning information with the mask modeling mechanism, which we believe will benefit future research and advance the field. Project page: https:VDT-2023.github.io
Capturing More: Learning Multi-Domain Representations for Robust Online Handwriting Verification
In this paper, we propose SPECTRUM, a temporal-frequency synergistic model that unlocks the untapped potential of multi-domain representation learning for online handwriting verification (OHV). SPECTRUM comprises three core components: (1) a multi-scale interactor that finely combines temporal and frequency features through dual-modal sequence interaction and multi-scale aggregation, (2) a self-gated fusion module that dynamically integrates global temporal and frequency features via self-driven balancing. These two components work synergistically to achieve micro-to-macro spectral-temporal integration. (3) A multi-domain distance-based verifier then utilizes both temporal and frequency representations to improve discrimination between genuine and forged handwriting, surpassing conventional temporal-only approaches. Extensive experiments demonstrate SPECTRUM's superior performance over existing OHV methods, underscoring the effectiveness of temporal-frequency multi-domain learning. Furthermore, we reveal that incorporating multiple handwritten biometrics fundamentally enhances the discriminative power of handwriting representations and facilitates verification. These findings not only validate the efficacy of multi-domain learning in OHV but also pave the way for future research in multi-domain approaches across both feature and biometric domains. Code is publicly available at https://github.com/NiceRingNode/SPECTRUM.
MLICv2: Enhanced Multi-Reference Entropy Modeling for Learned Image Compression
Recent advancements in learned image compression (LIC) have yielded impressive performance gains. Notably, the learned image compression models with multi-reference entropy models (MLIC series) have significantly outperformed existing traditional image codecs such as the Versatile Video Coding (VVC) Intra. In this paper, we present MLICv2 and MLICv2^+, enhanced versions of the MLIC series, featuring improved transform techniques, entropy modeling, and instance adaptability. For better transform, we introduce a simple token mixing transform block inspired by the meta transformer architecture, addressing the performance degradation at high bit-rates observed in previous MLIC series while maintaining computational efficiency. To enhance entropy modeling, we propose a hyperprior-guided global correlation prediction, enabling the capture of global contexts in the initial slice of the latent representation. We also develop a channel reweighting module to dynamically prioritize important channels within each context. Additionally, advanced positional embedding for context modeling and selective compression with guided optimization are investigated. To boost instance adaptability, we employ stochastic Gumbel annealing to iteratively refine the latent representation according to the rate-distortion optimization of a specific input image. This approach further enhances performance without impacting decoding speed. Experimental results demonstrate that our MLICv2 and MLICv2^+ achieve state-of-the-art performance, reducing Bjontegaard-Delta rate (BD-rate) by 16.54%, 21.61%, 16.05% and 20.46%, 24.35%, 19.14% respectively, compared to VTM-17.0 Intra on the Kodak, Tecnick, CLIC Pro Val dataset, respectively.
Pose-Based Sign Language Appearance Transfer
We introduce a method for transferring the signer's appearance in sign language skeletal poses while preserving the sign content. Using estimated poses, we transfer the appearance of one signer to another, maintaining natural movements and transitions. This approach improves pose-based rendering and sign stitching while obfuscating identity. Our experiments show that while the method reduces signer identification accuracy, it slightly harms sign recognition performance, highlighting a tradeoff between privacy and utility. Our code is available at https://github.com/sign-language-processing/pose-anonymization.
Revisiting Vision Transformer from the View of Path Ensemble
Vision Transformers (ViTs) are normally regarded as a stack of transformer layers. In this work, we propose a novel view of ViTs showing that they can be seen as ensemble networks containing multiple parallel paths with different lengths. Specifically, we equivalently transform the traditional cascade of multi-head self-attention (MSA) and feed-forward network (FFN) into three parallel paths in each transformer layer. Then, we utilize the identity connection in our new transformer form and further transform the ViT into an explicit multi-path ensemble network. From the new perspective, these paths perform two functions: the first is to provide the feature for the classifier directly, and the second is to provide the lower-level feature representation for subsequent longer paths. We investigate the influence of each path for the final prediction and discover that some paths even pull down the performance. Therefore, we propose the path pruning and EnsembleScale skills for improvement, which cut out the underperforming paths and re-weight the ensemble components, respectively, to optimize the path combination and make the short paths focus on providing high-quality representation for subsequent paths. We also demonstrate that our path combination strategies can help ViTs go deeper and act as high-pass filters to filter out partial low-frequency signals. To further enhance the representation of paths served for subsequent paths, self-distillation is applied to transfer knowledge from the long paths to the short paths. This work calls for more future research to explain and design ViTs from new perspectives.
Handwriting Transformers
We propose a novel transformer-based styled handwritten text image generation approach, HWT, that strives to learn both style-content entanglement as well as global and local writing style patterns. The proposed HWT captures the long and short range relationships within the style examples through a self-attention mechanism, thereby encoding both global and local style patterns. Further, the proposed transformer-based HWT comprises an encoder-decoder attention that enables style-content entanglement by gathering the style representation of each query character. To the best of our knowledge, we are the first to introduce a transformer-based generative network for styled handwritten text generation. Our proposed HWT generates realistic styled handwritten text images and significantly outperforms the state-of-the-art demonstrated through extensive qualitative, quantitative and human-based evaluations. The proposed HWT can handle arbitrary length of text and any desired writing style in a few-shot setting. Further, our HWT generalizes well to the challenging scenario where both words and writing style are unseen during training, generating realistic styled handwritten text images.
Avatar Fingerprinting for Authorized Use of Synthetic Talking-Head Videos
Modern generators render talking-head videos with impressive levels of photorealism, ushering in new user experiences such as videoconferencing under constrained bandwidth budgets. Their safe adoption, however, requires a mechanism to verify if the rendered video is trustworthy. For instance, for videoconferencing we must identify cases in which a synthetic video portrait uses the appearance of an individual without their consent. We term this task avatar fingerprinting. We propose to tackle it by leveraging facial motion signatures unique to each person. Specifically, we learn an embedding in which the motion signatures of one identity are grouped together, and pushed away from those of other identities, regardless of the appearance in the synthetic video. Avatar fingerprinting algorithms will be critical as talking head generators become more ubiquitous, and yet no large scale datasets exist for this new task. Therefore, we contribute a large dataset of people delivering scripted and improvised short monologues, accompanied by synthetic videos in which we render videos of one person using the facial appearance of another. Project page: https://research.nvidia.com/labs/nxp/avatar-fingerprinting/.
Diffusion-RWKV: Scaling RWKV-Like Architectures for Diffusion Models
Transformers have catalyzed advancements in computer vision and natural language processing (NLP) fields. However, substantial computational complexity poses limitations for their application in long-context tasks, such as high-resolution image generation. This paper introduces a series of architectures adapted from the RWKV model used in the NLP, with requisite modifications tailored for diffusion model applied to image generation tasks, referred to as Diffusion-RWKV. Similar to the diffusion with Transformers, our model is designed to efficiently handle patchnified inputs in a sequence with extra conditions, while also scaling up effectively, accommodating both large-scale parameters and extensive datasets. Its distinctive advantage manifests in its reduced spatial aggregation complexity, rendering it exceptionally adept at processing high-resolution images, thereby eliminating the necessity for windowing or group cached operations. Experimental results on both condition and unconditional image generation tasks demonstrate that Diffison-RWKV achieves performance on par with or surpasses existing CNN or Transformer-based diffusion models in FID and IS metrics while significantly reducing total computation FLOP usage.
MAMUT: A Novel Framework for Modifying Mathematical Formulas for the Generation of Specialized Datasets for Language Model Training
Mathematical formulas are a fundamental and widely used component in various scientific fields, serving as a universal language for expressing complex concepts and relationships. While state-of-the-art transformer models excel in processing and understanding natural language, they encounter challenges with mathematical notation, which involves a complex structure and diverse representations. This study focuses on the development of specialized training datasets to enhance the encoding of mathematical content. We introduce Math Mutator (MAMUT), a framework capable of generating equivalent and falsified versions of a given mathematical formula in LaTeX notation, effectively capturing the mathematical variety in notation of the same concept. Based on MAMUT, we have generated four large mathematical datasets containing diverse notation, which can be used to train language models with enhanced mathematical embeddings.
Fine-Tuning Video Transformers for Word-Level Bangla Sign Language: A Comparative Analysis for Classification Tasks
Sign Language Recognition (SLR) involves the automatic identification and classification of sign gestures from images or video, converting them into text or speech to improve accessibility for the hearing-impaired community. In Bangladesh, Bangla Sign Language (BdSL) serves as the primary mode of communication for many individuals with hearing impairments. This study fine-tunes state-of-the-art video transformer architectures -- VideoMAE, ViViT, and TimeSformer -- on BdSLW60 (arXiv:2402.08635), a small-scale BdSL dataset with 60 frequent signs. We standardized the videos to 30 FPS, resulting in 9,307 user trial clips. To evaluate scalability and robustness, the models were also fine-tuned on BdSLW401 (arXiv:2503.02360), a large-scale dataset with 401 sign classes. Additionally, we benchmark performance against public datasets, including LSA64 and WLASL. Data augmentation techniques such as random cropping, horizontal flipping, and short-side scaling were applied to improve model robustness. To ensure balanced evaluation across folds during model selection, we employed 10-fold stratified cross-validation on the training set, while signer-independent evaluation was carried out using held-out test data from unseen users U4 and U8. Results show that video transformer models significantly outperform traditional machine learning and deep learning approaches. Performance is influenced by factors such as dataset size, video quality, frame distribution, frame rate, and model architecture. Among the models, the VideoMAE variant (MCG-NJU/videomae-base-finetuned-kinetics) achieved the highest accuracies of 95.5% on the frame rate corrected BdSLW60 dataset and 81.04% on the front-facing signs of BdSLW401 -- demonstrating strong potential for scalable and accurate BdSL recognition.
Advanced Sign Language Video Generation with Compressed and Quantized Multi-Condition Tokenization
Sign Language Video Generation (SLVG) seeks to generate identity-preserving sign language videos from spoken language texts. Existing methods primarily rely on the single coarse condition (\eg, skeleton sequences) as the intermediary to bridge the translation model and the video generation model, which limits both the naturalness and expressiveness of the generated videos. To overcome these limitations, we propose SignViP, a novel SLVG framework that incorporates multiple fine-grained conditions for improved generation fidelity. Rather than directly translating error-prone high-dimensional conditions, SignViP adopts a discrete tokenization paradigm to integrate and represent fine-grained conditions (\ie, fine-grained poses and 3D hands). SignViP contains three core components. (1) Sign Video Diffusion Model is jointly trained with a multi-condition encoder to learn continuous embeddings that encapsulate fine-grained motion and appearance. (2) Finite Scalar Quantization (FSQ) Autoencoder is further trained to compress and quantize these embeddings into discrete tokens for compact representation of the conditions. (3) Multi-Condition Token Translator is trained to translate spoken language text to discrete multi-condition tokens. During inference, Multi-Condition Token Translator first translates the spoken language text into discrete multi-condition tokens. These tokens are then decoded to continuous embeddings by FSQ Autoencoder, which are subsequently injected into Sign Video Diffusion Model to guide video generation. Experimental results show that SignViP achieves state-of-the-art performance across metrics, including video quality, temporal coherence, and semantic fidelity. The code is available at https://github.com/umnooob/signvip/.
Texture, Shape, Order, and Relation Matter: A New Transformer Design for Sequential DeepFake Detection
Sequential DeepFake detection is an emerging task that predicts the manipulation sequence in order. Existing methods typically formulate it as an image-to-sequence problem, employing conventional Transformer architectures. However, these methods lack dedicated design and consequently result in limited performance. As such, this paper describes a new Transformer design, called {TSOM}, by exploring three perspectives: Texture, Shape, and Order of Manipulations. Our method features four major improvements: 182 we describe a new texture-aware branch that effectively captures subtle manipulation traces with a Diversiform Pixel Difference Attention module. 183 Then we introduce a Multi-source Cross-attention module to seek deep correlations among spatial and sequential features, enabling effective modeling of complex manipulation traces. 184 To further enhance the cross-attention, we describe a Shape-guided Gaussian mapping strategy, providing initial priors of the manipulation shape. 185 Finally, observing that the subsequent manipulation in a sequence may influence traces left in the preceding one, we intriguingly invert the prediction order from forward to backward, leading to notable gains as expected. Building upon TSOM, we introduce an extended method, {TSOM++}, which additionally explores Relation of manipulations: 186 we propose a new sequential contrastive learning scheme to capture relationships between various manipulation types in sequence, further enhancing the detection of manipulation traces. We conduct extensive experiments in comparison with several state-of-the-art methods, demonstrating the superiority of our method. The code has been released at https://github.com/OUC-VAS/TSOM.
When Shift Operation Meets Vision Transformer: An Extremely Simple Alternative to Attention Mechanism
Attention mechanism has been widely believed as the key to success of vision transformers (ViTs), since it provides a flexible and powerful way to model spatial relationships. However, is the attention mechanism truly an indispensable part of ViT? Can it be replaced by some other alternatives? To demystify the role of attention mechanism, we simplify it into an extremely simple case: ZERO FLOP and ZERO parameter. Concretely, we revisit the shift operation. It does not contain any parameter or arithmetic calculation. The only operation is to exchange a small portion of the channels between neighboring features. Based on this simple operation, we construct a new backbone network, namely ShiftViT, where the attention layers in ViT are substituted by shift operations. Surprisingly, ShiftViT works quite well in several mainstream tasks, e.g., classification, detection, and segmentation. The performance is on par with or even better than the strong baseline Swin Transformer. These results suggest that the attention mechanism might not be the vital factor that makes ViT successful. It can be even replaced by a zero-parameter operation. We should pay more attentions to the remaining parts of ViT in the future work. Code is available at github.com/microsoft/SPACH.
TokenFormer: Rethinking Transformer Scaling with Tokenized Model Parameters
Transformers have become the predominant architecture in foundation models due to their excellent performance across various domains. However, the substantial cost of scaling these models remains a significant concern. This problem arises primarily from their dependence on a fixed number of parameters within linear projections. When architectural modifications (e.g., channel dimensions) are introduced, the entire model typically requires retraining from scratch. As model sizes continue growing, this strategy results in increasingly high computational costs and becomes unsustainable. To overcome this problem, we introduce TokenFormer, a natively scalable architecture that leverages the attention mechanism not only for computations among input tokens but also for interactions between tokens and model parameters, thereby enhancing architectural flexibility. By treating model parameters as tokens, we replace all the linear projections in Transformers with our token-parameter attention layer, where input tokens act as queries and model parameters as keys and values. This reformulation allows for progressive and efficient scaling without necessitating retraining from scratch. Our model scales from 124M to 1.4B parameters by incrementally adding new key-value parameter pairs, achieving performance comparable to Transformers trained from scratch while greatly reducing training costs. Code and models are available at https://github.com/Haiyang-W/TokenFormer.
FP-VEC: Fingerprinting Large Language Models via Efficient Vector Addition
Training Large Language Models (LLMs) requires immense computational power and vast amounts of data. As a result, protecting the intellectual property of these models through fingerprinting is essential for ownership authentication. While adding fingerprints to LLMs through fine-tuning has been attempted, it remains costly and unscalable. In this paper, we introduce FP-VEC, a pilot study on using fingerprint vectors as an efficient fingerprinting method for LLMs. Our approach generates a fingerprint vector that represents a confidential signature embedded in the model, allowing the same fingerprint to be seamlessly incorporated into an unlimited number of LLMs via vector addition. Results on several LLMs show that FP-VEC is lightweight by running on CPU-only devices for fingerprinting, scalable with a single training and unlimited fingerprinting process, and preserves the model's normal behavior. The project page is available at https://fingerprintvector.github.io .
Training BatchNorm and Only BatchNorm: On the Expressive Power of Random Features in CNNs
A wide variety of deep learning techniques from style transfer to multitask learning rely on training affine transformations of features. Most prominent among these is the popular feature normalization technique BatchNorm, which normalizes activations and then subsequently applies a learned affine transform. In this paper, we aim to understand the role and expressive power of affine parameters used to transform features in this way. To isolate the contribution of these parameters from that of the learned features they transform, we investigate the performance achieved when training only these parameters in BatchNorm and freezing all weights at their random initializations. Doing so leads to surprisingly high performance considering the significant limitations that this style of training imposes. For example, sufficiently deep ResNets reach 82% (CIFAR-10) and 32% (ImageNet, top-5) accuracy in this configuration, far higher than when training an equivalent number of randomly chosen parameters elsewhere in the network. BatchNorm achieves this performance in part by naturally learning to disable around a third of the random features. Not only do these results highlight the expressive power of affine parameters in deep learning, but - in a broader sense - they characterize the expressive power of neural networks constructed simply by shifting and rescaling random features.
ADDP: Learning General Representations for Image Recognition and Generation with Alternating Denoising Diffusion Process
Image recognition and generation have long been developed independently of each other. With the recent trend towards general-purpose representation learning, the development of general representations for both recognition and generation tasks is also promoted. However, preliminary attempts mainly focus on generation performance, but are still inferior on recognition tasks. These methods are modeled in the vector-quantized (VQ) space, whereas leading recognition methods use pixels as inputs. Our key insights are twofold: (1) pixels as inputs are crucial for recognition tasks; (2) VQ tokens as reconstruction targets are beneficial for generation tasks. These observations motivate us to propose an Alternating Denoising Diffusion Process (ADDP) that integrates these two spaces within a single representation learning framework. In each denoising step, our method first decodes pixels from previous VQ tokens, then generates new VQ tokens from the decoded pixels. The diffusion process gradually masks out a portion of VQ tokens to construct the training samples. The learned representations can be used to generate diverse high-fidelity images and also demonstrate excellent transfer performance on recognition tasks. Extensive experiments show that our method achieves competitive performance on unconditional generation, ImageNet classification, COCO detection, and ADE20k segmentation. Importantly, our method represents the first successful development of general representations applicable to both generation and dense recognition tasks. Code shall be released.
signwriting-evaluation: Effective Sign Language Evaluation via SignWriting
The lack of automatic evaluation metrics tailored for SignWriting presents a significant obstacle in developing effective transcription and translation models for signed languages. This paper introduces a comprehensive suite of evaluation metrics specifically designed for SignWriting, including adaptations of standard metrics such as BLEU and chrF, the application of CLIPScore to SignWriting images, and a novel symbol distance metric unique to our approach. We address the distinct challenges of evaluating single signs versus continuous signing and provide qualitative demonstrations of metric efficacy through score distribution analyses and nearest-neighbor searches within the SignBank corpus. Our findings reveal the strengths and limitations of each metric, offering valuable insights for future advancements using SignWriting. This work contributes essential tools for evaluating SignWriting models, facilitating progress in the field of sign language processing. Our code is available at https://github.com/sign-language-processing/signwriting-evaluation.
Ridgeformer: Mutli-Stage Contrastive Training For Fine-grained Cross-Domain Fingerprint Recognition
The increasing demand for hygienic and portable biometric systems has underscored the critical need for advancements in contactless fingerprint recognition. Despite its potential, this technology faces notable challenges, including out-of-focus image acquisition, reduced contrast between fingerprint ridges and valleys, variations in finger positioning, and perspective distortion. These factors significantly hinder the accuracy and reliability of contactless fingerprint matching. To address these issues, we propose a novel multi-stage transformer-based contactless fingerprint matching approach that first captures global spatial features and subsequently refines localized feature alignment across fingerprint samples. By employing a hierarchical feature extraction and matching pipeline, our method ensures fine-grained, cross-sample alignment while maintaining the robustness of global feature representation. We perform extensive evaluations on publicly available datasets such as HKPolyU and RidgeBase under different evaluation protocols, such as contactless-to-contact matching and contactless-to-contactless matching and demonstrate that our proposed approach outperforms existing methods, including COTS solutions.
EcoFormer: Energy-Saving Attention with Linear Complexity
Transformer is a transformative framework that models sequential data and has achieved remarkable performance on a wide range of tasks, but with high computational and energy cost. To improve its efficiency, a popular choice is to compress the models via binarization which constrains the floating-point values into binary ones to save resource consumption owing to cheap bitwise operations significantly. However, existing binarization methods only aim at minimizing the information loss for the input distribution statistically, while ignoring the pairwise similarity modeling at the core of the attention. To this end, we propose a new binarization paradigm customized to high-dimensional softmax attention via kernelized hashing, called EcoFormer, to map the original queries and keys into low-dimensional binary codes in Hamming space. The kernelized hash functions are learned to match the ground-truth similarity relations extracted from the attention map in a self-supervised way. Based on the equivalence between the inner product of binary codes and the Hamming distance as well as the associative property of matrix multiplication, we can approximate the attention in linear complexity by expressing it as a dot-product of binary codes. Moreover, the compact binary representations of queries and keys enable us to replace most of the expensive multiply-accumulate operations in attention with simple accumulations to save considerable on-chip energy footprint on edge devices. Extensive experiments on both vision and language tasks show that EcoFormer consistently achieves comparable performance with standard attentions while consuming much fewer resources. For example, based on PVTv2-B0 and ImageNet-1K, Ecoformer achieves a 73% on-chip energy footprint reduction with only a 0.33% performance drop compared to the standard attention. Code is available at https://github.com/ziplab/EcoFormer.
Optimal Input Gain: All You Need to Supercharge a Feed-Forward Neural Network
Linear transformation of the inputs alters the training performance of feed-forward networks that are otherwise equivalent. However, most linear transforms are viewed as a pre-processing operation separate from the actual training. Starting from equivalent networks, it is shown that pre-processing inputs using linear transformation are equivalent to multiplying the negative gradient matrix with an autocorrelation matrix per training iteration. Second order method is proposed to find the autocorrelation matrix that maximizes learning in a given iteration. When the autocorrelation matrix is diagonal, the method optimizes input gains. This optimal input gain (OIG) approach is used to improve two first-order two-stage training algorithms, namely back-propagation (BP) and hidden weight optimization (HWO), which alternately update the input weights and solve linear equations for output weights. Results show that the proposed OIG approach greatly enhances the performance of the first-order algorithms, often allowing them to rival the popular Levenberg-Marquardt approach with far less computation. It is shown that HWO is equivalent to BP with Whitening transformation applied to the inputs. HWO effectively combines Whitening transformation with learning. Thus, OIG improved HWO could be a significant building block to more complex deep learning architectures.
Image-to-Image Translation via Group-wise Deep Whitening-and-Coloring Transformation
Recently, unsupervised exemplar-based image-to-image translation, conditioned on a given exemplar without the paired data, has accomplished substantial advancements. In order to transfer the information from an exemplar to an input image, existing methods often use a normalization technique, e.g., adaptive instance normalization, that controls the channel-wise statistics of an input activation map at a particular layer, such as the mean and the variance. Meanwhile, style transfer approaches similar task to image translation by nature, demonstrated superior performance by using the higher-order statistics such as covariance among channels in representing a style. In detail, it works via whitening (given a zero-mean input feature, transforming its covariance matrix into the identity). followed by coloring (changing the covariance matrix of the whitened feature to those of the style feature). However, applying this approach in image translation is computationally intensive and error-prone due to the expensive time complexity and its non-trivial backpropagation. In response, this paper proposes an end-to-end approach tailored for image translation that efficiently approximates this transformation with our novel regularization methods. We further extend our approach to a group-wise form for memory and time efficiency as well as image quality. Extensive qualitative and quantitative experiments demonstrate that our proposed method is fast, both in training and inference, and highly effective in reflecting the style of an exemplar. Finally, our code is available at https://github.com/WonwoongCho/GDWCT.
Beware of Aliases -- Signal Preservation is Crucial for Robust Image Restoration
Image restoration networks are usually comprised of an encoder and a decoder, responsible for aggregating image content from noisy, distorted data and to restore clean, undistorted images, respectively. Data aggregation as well as high-resolution image generation both usually come at the risk of involving aliases, i.e.~standard architectures put their ability to reconstruct the model input in jeopardy to reach high PSNR values on validation data. The price to be paid is low model robustness. In this work, we show that simply providing alias-free paths in state-of-the-art reconstruction transformers supports improved model robustness at low costs on the restoration performance. We do so by proposing BOA-Restormer, a transformer-based image restoration model that executes downsampling and upsampling operations partly in the frequency domain to ensure alias-free paths along the entire model while potentially preserving all relevant high-frequency information.
Siamese based Neural Network for Offline Writer Identification on word level data
Handwriting recognition is one of the desirable attributes of document comprehension and analysis. It is concerned with the documents writing style and characteristics that distinguish the authors. The diversity of text images, notably in images with varying handwriting, makes the process of learning good features difficult in cases where little data is available. In this paper, we propose a novel scheme to identify the author of a document based on the input word image. Our method is text independent and does not impose any constraint on the size of the input image under examination. To begin with, we detect crucial components in handwriting and extract regions surrounding them using Scale Invariant Feature Transform (SIFT). These patches are designed to capture individual writing features (including allographs, characters, or combinations of characters) that are likely to be unique for an individual writer. These features are then passed through a deep Convolutional Neural Network (CNN) in which the weights are learned by applying the concept of Similarity learning using Siamese network. Siamese network enhances the discrimination power of CNN by mapping similarity between different pairs of input image. Features learned at different scales of the extracted SIFT key-points are encoded using Sparse PCA, each components of the Sparse PCA is assigned a saliency score signifying its level of significance in discriminating different writers effectively. Finally, the weighted Sparse PCA corresponding to each SIFT key-points is combined to arrive at a final classification score for each writer. The proposed algorithm was evaluated on two publicly available databases (namely IAM and CVL) and is able to achieve promising result, when compared with other deep learning based algorithm.
FiTv2: Scalable and Improved Flexible Vision Transformer for Diffusion Model
Nature is infinitely resolution-free. In the context of this reality, existing diffusion models, such as Diffusion Transformers, often face challenges when processing image resolutions outside of their trained domain. To address this limitation, we conceptualize images as sequences of tokens with dynamic sizes, rather than traditional methods that perceive images as fixed-resolution grids. This perspective enables a flexible training strategy that seamlessly accommodates various aspect ratios during both training and inference, thus promoting resolution generalization and eliminating biases introduced by image cropping. On this basis, we present the Flexible Vision Transformer (FiT), a transformer architecture specifically designed for generating images with unrestricted resolutions and aspect ratios. We further upgrade the FiT to FiTv2 with several innovative designs, includingthe Query-Key vector normalization, the AdaLN-LoRA module, a rectified flow scheduler, and a Logit-Normal sampler. Enhanced by a meticulously adjusted network structure, FiTv2 exhibits 2times convergence speed of FiT. When incorporating advanced training-free extrapolation techniques, FiTv2 demonstrates remarkable adaptability in both resolution extrapolation and diverse resolution generation. Additionally, our exploration of the scalability of the FiTv2 model reveals that larger models exhibit better computational efficiency. Furthermore, we introduce an efficient post-training strategy to adapt a pre-trained model for the high-resolution generation. Comprehensive experiments demonstrate the exceptional performance of FiTv2 across a broad range of resolutions. We have released all the codes and models at https://github.com/whlzy/FiT to promote the exploration of diffusion transformer models for arbitrary-resolution image generation.
Equivariant Transformer Networks
How can prior knowledge on the transformation invariances of a domain be incorporated into the architecture of a neural network? We propose Equivariant Transformers (ETs), a family of differentiable image-to-image mappings that improve the robustness of models towards pre-defined continuous transformation groups. Through the use of specially-derived canonical coordinate systems, ETs incorporate functions that are equivariant by construction with respect to these transformations. We show empirically that ETs can be flexibly composed to improve model robustness towards more complicated transformation groups in several parameters. On a real-world image classification task, ETs improve the sample efficiency of ResNet classifiers, achieving relative improvements in error rate of up to 15% in the limited data regime while increasing model parameter count by less than 1%.
SleeperMark: Towards Robust Watermark against Fine-Tuning Text-to-image Diffusion Models
Recent advances in large-scale text-to-image (T2I) diffusion models have enabled a variety of downstream applications, including style customization, subject-driven personalization, and conditional generation. As T2I models require extensive data and computational resources for training, they constitute highly valued intellectual property (IP) for their legitimate owners, yet making them incentive targets for unauthorized fine-tuning by adversaries seeking to leverage these models for customized, usually profitable applications. Existing IP protection methods for diffusion models generally involve embedding watermark patterns and then verifying ownership through generated outputs examination, or inspecting the model's feature space. However, these techniques are inherently ineffective in practical scenarios when the watermarked model undergoes fine-tuning, and the feature space is inaccessible during verification ((i.e., black-box setting). The model is prone to forgetting the previously learned watermark knowledge when it adapts to a new task. To address this challenge, we propose SleeperMark, a novel framework designed to embed resilient watermarks into T2I diffusion models. SleeperMark explicitly guides the model to disentangle the watermark information from the semantic concepts it learns, allowing the model to retain the embedded watermark while continuing to be adapted to new downstream tasks. Our extensive experiments demonstrate the effectiveness of SleeperMark across various types of diffusion models, including latent diffusion models (e.g., Stable Diffusion) and pixel diffusion models (e.g., DeepFloyd-IF), showing robustness against downstream fine-tuning and various attacks at both the image and model levels, with minimal impact on the model's generative capability. The code is available at https://github.com/taco-group/SleeperMark.
Multi-dimensional Visual Prompt Enhanced Image Restoration via Mamba-Transformer Aggregation
Recent efforts on image restoration have focused on developing "all-in-one" models that can handle different degradation types and levels within single model. However, most of mainstream Transformer-based ones confronted with dilemma between model capabilities and computation burdens, since self-attention mechanism quadratically increase in computational complexity with respect to image size, and has inadequacies in capturing long-range dependencies. Most of Mamba-related ones solely scanned feature map in spatial dimension for global modeling, failing to fully utilize information in channel dimension. To address aforementioned problems, this paper has proposed to fully utilize complementary advantages from Mamba and Transformer without sacrificing computation efficiency. Specifically, the selective scanning mechanism of Mamba is employed to focus on spatial modeling, enabling capture long-range spatial dependencies under linear complexity. The self-attention mechanism of Transformer is applied to focus on channel modeling, avoiding high computation burdens that are in quadratic growth with image's spatial dimensions. Moreover, to enrich informative prompts for effective image restoration, multi-dimensional prompt learning modules are proposed to learn prompt-flows from multi-scale encoder/decoder layers, benefiting for revealing underlying characteristic of various degradations from both spatial and channel perspectives, therefore, enhancing the capabilities of "all-in-one" model to solve various restoration tasks. Extensive experiment results on several image restoration benchmark tasks such as image denoising, dehazing, and deraining, have demonstrated that the proposed method can achieve new state-of-the-art performance, compared with many popular mainstream methods. Related source codes and pre-trained parameters will be public on github https://github.com/12138-chr/MTAIR.
Learning A Sparse Transformer Network for Effective Image Deraining
Transformers-based methods have achieved significant performance in image deraining as they can model the non-local information which is vital for high-quality image reconstruction. In this paper, we find that most existing Transformers usually use all similarities of the tokens from the query-key pairs for the feature aggregation. However, if the tokens from the query are different from those of the key, the self-attention values estimated from these tokens also involve in feature aggregation, which accordingly interferes with the clear image restoration. To overcome this problem, we propose an effective DeRaining network, Sparse Transformer (DRSformer) that can adaptively keep the most useful self-attention values for feature aggregation so that the aggregated features better facilitate high-quality image reconstruction. Specifically, we develop a learnable top-k selection operator to adaptively retain the most crucial attention scores from the keys for each query for better feature aggregation. Simultaneously, as the naive feed-forward network in Transformers does not model the multi-scale information that is important for latent clear image restoration, we develop an effective mixed-scale feed-forward network to generate better features for image deraining. To learn an enriched set of hybrid features, which combines local context from CNN operators, we equip our model with mixture of experts feature compensator to present a cooperation refinement deraining scheme. Extensive experimental results on the commonly used benchmarks demonstrate that the proposed method achieves favorable performance against state-of-the-art approaches. The source code and trained models are available at https://github.com/cschenxiang/DRSformer.
Scattering Vision Transformer: Spectral Mixing Matters
Vision transformers have gained significant attention and achieved state-of-the-art performance in various computer vision tasks, including image classification, instance segmentation, and object detection. However, challenges remain in addressing attention complexity and effectively capturing fine-grained information within images. Existing solutions often resort to down-sampling operations, such as pooling, to reduce computational cost. Unfortunately, such operations are non-invertible and can result in information loss. In this paper, we present a novel approach called Scattering Vision Transformer (SVT) to tackle these challenges. SVT incorporates a spectrally scattering network that enables the capture of intricate image details. SVT overcomes the invertibility issue associated with down-sampling operations by separating low-frequency and high-frequency components. Furthermore, SVT introduces a unique spectral gating network utilizing Einstein multiplication for token and channel mixing, effectively reducing complexity. We show that SVT achieves state-of-the-art performance on the ImageNet dataset with a significant reduction in a number of parameters and FLOPS. SVT shows 2\% improvement over LiTv2 and iFormer. SVT-H-S reaches 84.2\% top-1 accuracy, while SVT-H-B reaches 85.2\% (state-of-art for base versions) and SVT-H-L reaches 85.7\% (again state-of-art for large versions). SVT also shows comparable results in other vision tasks such as instance segmentation. SVT also outperforms other transformers in transfer learning on standard datasets such as CIFAR10, CIFAR100, Oxford Flower, and Stanford Car datasets. The project page is available on this webpage.https://badripatro.github.io/svt/.
MetaFormer Baselines for Vision
MetaFormer, the abstracted architecture of Transformer, has been found to play a significant role in achieving competitive performance. In this paper, we further explore the capacity of MetaFormer, again, without focusing on token mixer design: we introduce several baseline models under MetaFormer using the most basic or common mixers, and summarize our observations as follows: (1) MetaFormer ensures solid lower bound of performance. By merely adopting identity mapping as the token mixer, the MetaFormer model, termed IdentityFormer, achieves >80% accuracy on ImageNet-1K. (2) MetaFormer works well with arbitrary token mixers. When specifying the token mixer as even a random matrix to mix tokens, the resulting model RandFormer yields an accuracy of >81%, outperforming IdentityFormer. Rest assured of MetaFormer's results when new token mixers are adopted. (3) MetaFormer effortlessly offers state-of-the-art results. With just conventional token mixers dated back five years ago, the models instantiated from MetaFormer already beat state of the art. (a) ConvFormer outperforms ConvNeXt. Taking the common depthwise separable convolutions as the token mixer, the model termed ConvFormer, which can be regarded as pure CNNs, outperforms the strong CNN model ConvNeXt. (b) CAFormer sets new record on ImageNet-1K. By simply applying depthwise separable convolutions as token mixer in the bottom stages and vanilla self-attention in the top stages, the resulting model CAFormer sets a new record on ImageNet-1K: it achieves an accuracy of 85.5% at 224x224 resolution, under normal supervised training without external data or distillation. In our expedition to probe MetaFormer, we also find that a new activation, StarReLU, reduces 71% FLOPs of activation compared with GELU yet achieves better performance. We expect StarReLU to find great potential in MetaFormer-like models alongside other neural networks.
ScreenMark: Watermarking Arbitrary Visual Content on Screen
Digital watermarking has shown its effectiveness in protecting multimedia content. However, existing watermarking is predominantly tailored for specific media types, rendering them less effective for the protection of content displayed on computer screens, which is often multi-modal and dynamic. Visual Screen Content (VSC), is particularly susceptible to theft and leakage through screenshots, a vulnerability that current watermarking methods fail to adequately address.To address these challenges, we propose ScreenMark, a robust and practical watermarking method designed specifically for arbitrary VSC protection. ScreenMark utilizes a three-stage progressive watermarking framework. Initially, inspired by diffusion principles, we initialize the mutual transformation between regular watermark information and irregular watermark patterns. Subsequently, these patterns are integrated with screen content using a pre-multiplication alpha blending technique, supported by a pre-trained screen decoder for accurate watermark retrieval. The progressively complex distorter enhances the robustness of the watermark in real-world screenshot scenarios. Finally, the model undergoes fine-tuning guided by a joint-level distorter to ensure optimal performance. To validate the effectiveness of ScreenMark, we compiled a dataset comprising 100,000 screenshots from various devices and resolutions. Extensive experiments on different datasets confirm the superior robustness, imperceptibility, and practical applicability of the method.
Beyond Spatio-Temporal Representations: Evolving Fourier Transform for Temporal Graphs
We present the Evolving Graph Fourier Transform (EFT), the first invertible spectral transform that captures evolving representations on temporal graphs. We motivate our work by the inadequacy of existing methods for capturing the evolving graph spectra, which are also computationally expensive due to the temporal aspect along with the graph vertex domain. We view the problem as an optimization over the Laplacian of the continuous time dynamic graph. Additionally, we propose pseudo-spectrum relaxations that decompose the transformation process, making it highly computationally efficient. The EFT method adeptly captures the evolving graph's structural and positional properties, making it effective for downstream tasks on evolving graphs. Hence, as a reference implementation, we develop a simple neural model induced with EFT for capturing evolving graph spectra. We empirically validate our theoretical findings on a number of large-scale and standard temporal graph benchmarks and demonstrate that our model achieves state-of-the-art performance.
Converting Transformers into DGNNs Form
Recent advances in deep learning have established Transformer architectures as the predominant modeling paradigm. Central to the success of Transformers is the self-attention mechanism, which scores the similarity between query and key matrices to modulate a value matrix. This operation bears striking similarities to digraph convolution, prompting an investigation into whether digraph convolution could serve as an alternative to self-attention. In this study, we formalize this concept by introducing a synthetic unitary digraph convolution based on the digraph Fourier transform. The resulting model, which we term Converter, effectively converts a Transformer into a Directed Graph Neural Network (DGNN) form. We have tested Converter on Long-Range Arena benchmark, long document classification, and DNA sequence-based taxonomy classification. Our experimental results demonstrate that Converter achieves superior performance while maintaining computational efficiency and architectural simplicity, which establishes it as a lightweight yet powerful Transformer variant.
Fourier Contour Embedding for Arbitrary-Shaped Text Detection
One of the main challenges for arbitrary-shaped text detection is to design a good text instance representation that allows networks to learn diverse text geometry variances. Most of existing methods model text instances in image spatial domain via masks or contour point sequences in the Cartesian or the polar coordinate system. However, the mask representation might lead to expensive post-processing, while the point sequence one may have limited capability to model texts with highly-curved shapes. To tackle these problems, we model text instances in the Fourier domain and propose one novel Fourier Contour Embedding (FCE) method to represent arbitrary shaped text contours as compact signatures. We further construct FCENet with a backbone, feature pyramid networks (FPN) and a simple post-processing with the Inverse Fourier Transformation (IFT) and Non-Maximum Suppression (NMS). Different from previous methods, FCENet first predicts compact Fourier signatures of text instances, and then reconstructs text contours via IFT and NMS during test. Extensive experiments demonstrate that FCE is accurate and robust to fit contours of scene texts even with highly-curved shapes, and also validate the effectiveness and the good generalization of FCENet for arbitrary-shaped text detection. Furthermore, experimental results show that our FCENet is superior to the state-of-the-art (SOTA) methods on CTW1500 and Total-Text, especially on challenging highly-curved text subset.
Hidden in the Noise: Two-Stage Robust Watermarking for Images
As the quality of image generators continues to improve, deepfakes become a topic of considerable societal debate. Image watermarking allows responsible model owners to detect and label their AI-generated content, which can mitigate the harm. Yet, current state-of-the-art methods in image watermarking remain vulnerable to forgery and removal attacks. This vulnerability occurs in part because watermarks distort the distribution of generated images, unintentionally revealing information about the watermarking techniques. In this work, we first demonstrate a distortion-free watermarking method for images, based on a diffusion model's initial noise. However, detecting the watermark requires comparing the initial noise reconstructed for an image to all previously used initial noises. To mitigate these issues, we propose a two-stage watermarking framework for efficient detection. During generation, we augment the initial noise with generated Fourier patterns to embed information about the group of initial noises we used. For detection, we (i) retrieve the relevant group of noises, and (ii) search within the given group for an initial noise that might match our image. This watermarking approach achieves state-of-the-art robustness to forgery and removal against a large battery of attacks.
Representation Learning by Learning to Count
We introduce a novel method for representation learning that uses an artificial supervision signal based on counting visual primitives. This supervision signal is obtained from an equivariance relation, which does not require any manual annotation. We relate transformations of images to transformations of the representations. More specifically, we look for the representation that satisfies such relation rather than the transformations that match a given representation. In this paper, we use two image transformations in the context of counting: scaling and tiling. The first transformation exploits the fact that the number of visual primitives should be invariant to scale. The second transformation allows us to equate the total number of visual primitives in each tile to that in the whole image. These two transformations are combined in one constraint and used to train a neural network with a contrastive loss. The proposed task produces representations that perform on par or exceed the state of the art in transfer learning benchmarks.
Forgery-aware Adaptive Transformer for Generalizable Synthetic Image Detection
In this paper, we study the problem of generalizable synthetic image detection, aiming to detect forgery images from diverse generative methods, e.g., GANs and diffusion models. Cutting-edge solutions start to explore the benefits of pre-trained models, and mainly follow the fixed paradigm of solely training an attached classifier, e.g., combining frozen CLIP-ViT with a learnable linear layer in UniFD. However, our analysis shows that such a fixed paradigm is prone to yield detectors with insufficient learning regarding forgery representations. We attribute the key challenge to the lack of forgery adaptation, and present a novel forgery-aware adaptive transformer approach, namely FatFormer. Based on the pre-trained vision-language spaces of CLIP, FatFormer introduces two core designs for the adaption to build generalized forgery representations. First, motivated by the fact that both image and frequency analysis are essential for synthetic image detection, we develop a forgery-aware adapter to adapt image features to discern and integrate local forgery traces within image and frequency domains. Second, we find that considering the contrastive objectives between adapted image features and text prompt embeddings, a previously overlooked aspect, results in a nontrivial generalization improvement. Accordingly, we introduce language-guided alignment to supervise the forgery adaptation with image and text prompts in FatFormer. Experiments show that, by coupling these two designs, our approach tuned on 4-class ProGAN data attains a remarkable detection performance, achieving an average of 98% accuracy to unseen GANs, and surprisingly generalizes to unseen diffusion models with 95% accuracy.
ZeroI2V: Zero-Cost Adaptation of Pre-trained Transformers from Image to Video
Adapting image models to the video domain has emerged as an efficient paradigm for solving video recognition tasks. Due to the huge number of parameters and effective transferability of image models, performing full fine-tuning is less efficient and even unnecessary. Thus, recent research is shifting its focus toward parameter-efficient image-to-video adaptation. However, these adaptation strategies inevitably introduce extra computational costs to deal with the domain gap and temporal modeling in videos. In this paper, we present a new adaptation paradigm (ZeroI2V) to transfer the image transformers to video recognition tasks (i.e., introduce zero extra cost to the original models during inference). To achieve this goal, we present two core designs. First, to capture the dynamics in videos and reduce the difficulty of image-to-video adaptation, we exploit the flexibility of self-attention and introduce spatial-temporal dual-headed attention (STDHA). This approach efficiently endows the image transformers with temporal modeling capability at zero extra parameters and computation. Second, to handle the domain gap between images and videos, we propose a linear adaption strategy that utilizes lightweight densely placed linear adapters to fully transfer the frozen image models to video recognition. Thanks to the customized linear design, all newly added adapters could be easily merged with the original modules through structural reparameterization after training, enabling zero extra cost during inference. Extensive experiments on representative fully-supervised and few-shot video recognition benchmarks showcase that ZeroI2V can match or even outperform previous state-of-the-art methods while enjoying superior parameter and inference efficiency.
On the Optimization and Generalization of Two-layer Transformers with Sign Gradient Descent
The Adam optimizer is widely used for transformer optimization in practice, which makes understanding the underlying optimization mechanisms an important problem. However, due to the Adam's complexity, theoretical analysis of how it optimizes transformers remains a challenging task. Fortunately, Sign Gradient Descent (SignGD) serves as an effective surrogate for Adam. Despite its simplicity, theoretical understanding of how SignGD optimizes transformers still lags behind. In this work, we study how SignGD optimizes a two-layer transformer -- consisting of a softmax attention layer with trainable query-key parameterization followed by a linear layer -- on a linearly separable noisy dataset. We identify four stages in the training dynamics, each exhibiting intriguing behaviors. Based on the training dynamics, we prove the fast convergence but poor generalization of the learned transformer on the noisy dataset. We also show that Adam behaves similarly to SignGD in terms of both optimization and generalization in this setting. Additionally, we find that the poor generalization of SignGD is not solely due to data noise, suggesting that both SignGD and Adam requires high-quality data for real-world tasks. Finally, experiments on synthetic and real-world datasets empirically support our theoretical results.
Sheet Music Transformer ++: End-to-End Full-Page Optical Music Recognition for Pianoform Sheet Music
Optical Music Recognition is a field that has progressed significantly, bringing accurate systems that transcribe effectively music scores into digital formats. Despite this, there are still several limitations that hinder OMR from achieving its full potential. Specifically, state of the art OMR still depends on multi-stage pipelines for performing full-page transcription, as well as it has only been demonstrated in monophonic cases, leaving behind very relevant engravings. In this work, we present the Sheet Music Transformer++, an end-to-end model that is able to transcribe full-page polyphonic music scores without the need of a previous Layout Analysis step. This is done thanks to an extensive curriculum learning-based pretraining with synthetic data generation. We conduct several experiments on a full-page extension of a public polyphonic transcription dataset. The experimental outcomes confirm that the model is competent at transcribing full-page pianoform scores, marking a noteworthy milestone in end-to-end OMR transcription.
MaskGIT: Masked Generative Image Transformer
Generative transformers have experienced rapid popularity growth in the computer vision community in synthesizing high-fidelity and high-resolution images. The best generative transformer models so far, however, still treat an image naively as a sequence of tokens, and decode an image sequentially following the raster scan ordering (i.e. line-by-line). We find this strategy neither optimal nor efficient. This paper proposes a novel image synthesis paradigm using a bidirectional transformer decoder, which we term MaskGIT. During training, MaskGIT learns to predict randomly masked tokens by attending to tokens in all directions. At inference time, the model begins with generating all tokens of an image simultaneously, and then refines the image iteratively conditioned on the previous generation. Our experiments demonstrate that MaskGIT significantly outperforms the state-of-the-art transformer model on the ImageNet dataset, and accelerates autoregressive decoding by up to 64x. Besides, we illustrate that MaskGIT can be easily extended to various image editing tasks, such as inpainting, extrapolation, and image manipulation.
Audio-to-Score Conversion Model Based on Whisper methodology
This thesis develops a Transformer model based on Whisper, which extracts melodies and chords from music audio and records them into ABC notation. A comprehensive data processing workflow is customized for ABC notation, including data cleansing, formatting, and conversion, and a mutation mechanism is implemented to increase the diversity and quality of training data. This thesis innovatively introduces the "Orpheus' Score", a custom notation system that converts music information into tokens, designs a custom vocabulary library, and trains a corresponding custom tokenizer. Experiments show that compared to traditional algorithms, the model has significantly improved accuracy and performance. While providing a convenient audio-to-score tool for music enthusiasts, this work also provides new ideas and tools for research in music information processing.
A Watermark for Large Language Models
Potential harms of large language models can be mitigated by watermarking model output, i.e., embedding signals into generated text that are invisible to humans but algorithmically detectable from a short span of tokens. We propose a watermarking framework for proprietary language models. The watermark can be embedded with negligible impact on text quality, and can be detected using an efficient open-source algorithm without access to the language model API or parameters. The watermark works by selecting a randomized set of "green" tokens before a word is generated, and then softly promoting use of green tokens during sampling. We propose a statistical test for detecting the watermark with interpretable p-values, and derive an information-theoretic framework for analyzing the sensitivity of the watermark. We test the watermark using a multi-billion parameter model from the Open Pretrained Transformer (OPT) family, and discuss robustness and security.
TransFace: Calibrating Transformer Training for Face Recognition from a Data-Centric Perspective
Vision Transformers (ViTs) have demonstrated powerful representation ability in various visual tasks thanks to their intrinsic data-hungry nature. However, we unexpectedly find that ViTs perform vulnerably when applied to face recognition (FR) scenarios with extremely large datasets. We investigate the reasons for this phenomenon and discover that the existing data augmentation approach and hard sample mining strategy are incompatible with ViTs-based FR backbone due to the lack of tailored consideration on preserving face structural information and leveraging each local token information. To remedy these problems, this paper proposes a superior FR model called TransFace, which employs a patch-level data augmentation strategy named DPAP and a hard sample mining strategy named EHSM. Specially, DPAP randomly perturbs the amplitude information of dominant patches to expand sample diversity, which effectively alleviates the overfitting problem in ViTs. EHSM utilizes the information entropy in the local tokens to dynamically adjust the importance weight of easy and hard samples during training, leading to a more stable prediction. Experiments on several benchmarks demonstrate the superiority of our TransFace. Code and models are available at https://github.com/DanJun6737/TransFace.
Progressive Transformers for End-to-End Sign Language Production
The goal of automatic Sign Language Production (SLP) is to translate spoken language to a continuous stream of sign language video at a level comparable to a human translator. If this was achievable, then it would revolutionise Deaf hearing communications. Previous work on predominantly isolated SLP has shown the need for architectures that are better suited to the continuous domain of full sign sequences. In this paper, we propose Progressive Transformers, a novel architecture that can translate from discrete spoken language sentences to continuous 3D skeleton pose outputs representing sign language. We present two model configurations, an end-to-end network that produces sign direct from text and a stacked network that utilises a gloss intermediary. Our transformer network architecture introduces a counter that enables continuous sequence generation at training and inference. We also provide several data augmentation processes to overcome the problem of drift and improve the performance of SLP models. We propose a back translation evaluation mechanism for SLP, presenting benchmark quantitative results on the challenging RWTH-PHOENIX-Weather-2014T(PHOENIX14T) dataset and setting baselines for future research.
Spatial-Spectral Morphological Mamba for Hyperspectral Image Classification
In recent years, the emergence of Transformers with self-attention mechanism has revolutionized the hyperspectral image (HSI) classification. However, these models face major challenges in computational efficiency, as their complexity increases quadratically with the sequence length. The Mamba architecture, leveraging a state space model (SSM), offers a more efficient alternative to Transformers. This paper introduces the Spatial-Spectral Morphological Mamba (MorpMamba) model in which, a token generation module first converts the HSI patch into spatial-spectral tokens. These tokens are then processed by morphological operations, which compute structural and shape information using depthwise separable convolutional operations. The extracted information is enhanced in a feature enhancement module that adjusts the spatial and spectral tokens based on the center region of the HSI sample, allowing for effective information fusion within each block. Subsequently, the tokens are refined through a multi-head self-attention which further improves the feature space. Finally, the combined information is fed into the state space block for classification and the creation of the ground truth map. Experiments on widely used HSI datasets demonstrate that the MorpMamba model outperforms (parametric efficiency) both CNN and Transformer models. The source code will be made publicly available at https://github.com/MHassaanButt/MorpMamba.
Watermarking Images in Self-Supervised Latent Spaces
We revisit watermarking techniques based on pre-trained deep networks, in the light of self-supervised approaches. We present a way to embed both marks and binary messages into their latent spaces, leveraging data augmentation at marking time. Our method can operate at any resolution and creates watermarks robust to a broad range of transformations (rotations, crops, JPEG, contrast, etc). It significantly outperforms the previous zero-bit methods, and its performance on multi-bit watermarking is on par with state-of-the-art encoder-decoder architectures trained end-to-end for watermarking. The code is available at github.com/facebookresearch/ssl_watermarking
The Fast Johnson-Lindenstrauss Transform is Even Faster
The seminal Fast Johnson-Lindenstrauss (Fast JL) transform by Ailon and Chazelle (SICOMP'09) embeds a set of n points in d-dimensional Euclidean space into optimal k=O(varepsilon^{-2} ln n) dimensions, while preserving all pairwise distances to within a factor (1 pm varepsilon). The Fast JL transform supports computing the embedding of a data point in O(d ln d +k ln^2 n) time, where the d ln d term comes from multiplication with a d times d Hadamard matrix and the k ln^2 n term comes from multiplication with a sparse k times d matrix. Despite the Fast JL transform being more than a decade old, it is one of the fastest dimensionality reduction techniques for many tradeoffs between varepsilon, d and n. In this work, we give a surprising new analysis of the Fast JL transform, showing that the k ln^2 n term in the embedding time can be improved to (k ln^2 n)/alpha for an alpha = Omega(min{varepsilon^{-1}ln(1/varepsilon), ln n}). The improvement follows by using an even sparser matrix. We also complement our improved analysis with a lower bound showing that our new analysis is in fact tight.
Equivariant Contrastive Learning
In state-of-the-art self-supervised learning (SSL) pre-training produces semantically good representations by encouraging them to be invariant under meaningful transformations prescribed from human knowledge. In fact, the property of invariance is a trivial instance of a broader class called equivariance, which can be intuitively understood as the property that representations transform according to the way the inputs transform. Here, we show that rather than using only invariance, pre-training that encourages non-trivial equivariance to some transformations, while maintaining invariance to other transformations, can be used to improve the semantic quality of representations. Specifically, we extend popular SSL methods to a more general framework which we name Equivariant Self-Supervised Learning (E-SSL). In E-SSL, a simple additional pre-training objective encourages equivariance by predicting the transformations applied to the input. We demonstrate E-SSL's effectiveness empirically on several popular computer vision benchmarks, e.g. improving SimCLR to 72.5% linear probe accuracy on ImageNet. Furthermore, we demonstrate usefulness of E-SSL for applications beyond computer vision; in particular, we show its utility on regression problems in photonics science. Our code, datasets and pre-trained models are available at https://github.com/rdangovs/essl to aid further research in E-SSL.
WUSH: Near-Optimal Adaptive Transforms for LLM Quantization
Quantization to low bitwidth is a standard approach for deploying large language models, however, a few extreme weights and activations stretch the dynamic range and reduce the effective resolution of the quantizer. A common mitigation approach is to apply some fixed orthogonal transforms, such as Hadamard matrices, before quantization, which typically reduces the dynamic range. Yet, these transforms ignore the statistics of the data, and their optimality is currently not understood. In this work, we derive, for the first time, closed-form optimal linear blockwise transforms for joint weight-activation quantization using standard data-free quantizers for common numerical formats. Specifically, we provide derivations of the optimal adaptive (data-aware) transforms for round-to-nearest (RTN), AbsMax-scaled block quantizers for both integer and floating-point formats. The resulting construction, which we call WUSH, combines a Hadamard backbone with a data-dependent component based on second-order moments, yielding a non-orthogonal transform that is provably optimal under mild assumptions and remains structured for efficient implementation. Preliminary experimental results show that our approach consistently improves upon the Hadamard transform for common formats.
A Simple Baseline for Spoken Language to Sign Language Translation with 3D Avatars
The objective of this paper is to develop a functional system for translating spoken languages into sign languages, referred to as Spoken2Sign translation. The Spoken2Sign task is orthogonal and complementary to traditional sign language to spoken language (Sign2Spoken) translation. To enable Spoken2Sign translation, we present a simple baseline consisting of three steps: 1) creating a gloss-video dictionary using existing Sign2Spoken benchmarks; 2) estimating a 3D sign for each sign video in the dictionary; 3) training a Spoken2Sign model, which is composed of a Text2Gloss translator, a sign connector, and a rendering module, with the aid of the yielded gloss-3D sign dictionary. The translation results are then displayed through a sign avatar. As far as we know, we are the first to present the Spoken2Sign task in an output format of 3D signs. In addition to its capability of Spoken2Sign translation, we also demonstrate that two by-products of our approach-3D keypoint augmentation and multi-view understanding-can assist in keypoint-based sign language understanding. Code and models are available at https://github.com/FangyunWei/SLRT.
Transform Once: Efficient Operator Learning in Frequency Domain
Spectral analysis provides one of the most effective paradigms for information-preserving dimensionality reduction, as simple descriptions of naturally occurring signals are often obtained via few terms of periodic basis functions. In this work, we study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time: frequency-domain models (FDMs). Existing FDMs are based on complex-valued transforms i.e. Fourier Transforms (FT), and layers that perform computation on the spectrum and input data separately. This design introduces considerable computational overhead: for each layer, a forward and inverse FT. Instead, this work introduces a blueprint for frequency domain learning through a single transform: transform once (T1). To enable efficient, direct learning in the frequency domain we derive a variance-preserving weight initialization scheme and investigate methods for frequency selection in reduced-order FDMs. Our results noticeably streamline the design process of FDMs, pruning redundant transforms, and leading to speedups of 3x to 10x that increase with data resolution and model size. We perform extensive experiments on learning the solution operator of spatio-temporal dynamics, including incompressible Navier-Stokes, turbulent flows around airfoils and high-resolution video of smoke. T1 models improve on the test performance of FDMs while requiring significantly less computation (5 hours instead of 32 for our large-scale experiment), with over 20% reduction in average predictive error across tasks.
Power Law Graph Transformer for Machine Translation and Representation Learning
We present the Power Law Graph Transformer, a transformer model with well defined deductive and inductive tasks for prediction and representation learning. The deductive task learns the dataset level (global) and instance level (local) graph structures in terms of learnable power law distribution parameters. The inductive task outputs the prediction probabilities using the deductive task output, similar to a transductive model. We trained our model with Turkish-English and Portuguese-English datasets from TED talk transcripts for machine translation and compared the model performance and characteristics to a transformer model with scaled dot product attention trained on the same experimental setup. We report BLEU scores of 17.79 and 28.33 on the Turkish-English and Portuguese-English translation tasks with our model, respectively. We also show how a duality between a quantization set and N-dimensional manifold representation can be leveraged to transform between local and global deductive-inductive outputs using successive application of linear and non-linear transformations end-to-end.
Pyramid Hierarchical Transformer for Hyperspectral Image Classification
The traditional Transformer model encounters challenges with variable-length input sequences, particularly in Hyperspectral Image Classification (HSIC), leading to efficiency and scalability concerns. To overcome this, we propose a pyramid-based hierarchical transformer (PyFormer). This innovative approach organizes input data hierarchically into segments, each representing distinct abstraction levels, thereby enhancing processing efficiency for lengthy sequences. At each level, a dedicated transformer module is applied, effectively capturing both local and global context. Spatial and spectral information flow within the hierarchy facilitates communication and abstraction propagation. Integration of outputs from different levels culminates in the final input representation. Experimental results underscore the superiority of the proposed method over traditional approaches. Additionally, the incorporation of disjoint samples augments robustness and reliability, thereby highlighting the potential of our approach in advancing HSIC. The source code is available at https://github.com/mahmad00/PyFormer.
Density Modeling of Images using a Generalized Normalization Transformation
We introduce a parametric nonlinear transformation that is well-suited for Gaussianizing data from natural images. The data are linearly transformed, and each component is then normalized by a pooled activity measure, computed by exponentiating a weighted sum of rectified and exponentiated components and a constant. We optimize the parameters of the full transformation (linear transform, exponents, weights, constant) over a database of natural images, directly minimizing the negentropy of the responses. The optimized transformation substantially Gaussianizes the data, achieving a significantly smaller mutual information between transformed components than alternative methods including ICA and radial Gaussianization. The transformation is differentiable and can be efficiently inverted, and thus induces a density model on images. We show that samples of this model are visually similar to samples of natural image patches. We demonstrate the use of the model as a prior probability density that can be used to remove additive noise. Finally, we show that the transformation can be cascaded, with each layer optimized using the same Gaussianization objective, thus offering an unsupervised method of optimizing a deep network architecture.
HAT: Hybrid Attention Transformer for Image Restoration
Transformer-based methods have shown impressive performance in image restoration tasks, such as image super-resolution and denoising. However, we find that these networks can only utilize a limited spatial range of input information through attribution analysis. This implies that the potential of Transformer is still not fully exploited in existing networks. In order to activate more input pixels for better restoration, we propose a new Hybrid Attention Transformer (HAT). It combines both channel attention and window-based self-attention schemes, thus making use of their complementary advantages. Moreover, to better aggregate the cross-window information, we introduce an overlapping cross-attention module to enhance the interaction between neighboring window features. In the training stage, we additionally adopt a same-task pre-training strategy to further exploit the potential of the model for further improvement. Extensive experiments have demonstrated the effectiveness of the proposed modules. We further scale up the model to show that the performance of the SR task can be greatly improved. Besides, we extend HAT to more image restoration applications, including real-world image super-resolution, Gaussian image denoising and image compression artifacts reduction. Experiments on benchmark and real-world datasets demonstrate that our HAT achieves state-of-the-art performance both quantitatively and qualitatively. Codes and models are publicly available at https://github.com/XPixelGroup/HAT.
Reformer: The Efficient Transformer
Large Transformer models routinely achieve state-of-the-art results on a number of tasks but training these models can be prohibitively costly, especially on long sequences. We introduce two techniques to improve the efficiency of Transformers. For one, we replace dot-product attention by one that uses locality-sensitive hashing, changing its complexity from O(L^2) to O(Llog L), where L is the length of the sequence. Furthermore, we use reversible residual layers instead of the standard residuals, which allows storing activations only once in the training process instead of N times, where N is the number of layers. The resulting model, the Reformer, performs on par with Transformer models while being much more memory-efficient and much faster on long sequences.
Advancing Plain Vision Transformer Towards Remote Sensing Foundation Model
Large-scale vision foundation models have made significant progress in visual tasks on natural images, with vision transformers being the primary choice due to their good scalability and representation ability. However, large-scale models in remote sensing (RS) have not yet been sufficiently explored. In this paper, we resort to plain vision transformers with about 100 million parameters and make the first attempt to propose large vision models tailored to RS tasks and investigate how such large models perform. To handle the large sizes and objects of arbitrary orientations in RS images, we propose a new rotated varied-size window attention to replace the original full attention in transformers, which can significantly reduce the computational cost and memory footprint while learning better object representation by extracting rich context from the generated diverse windows. Experiments on detection tasks show the superiority of our model over all state-of-the-art models, achieving 81.24% mAP on the DOTA-V1.0 dataset. The results of our models on downstream classification and segmentation tasks also show competitive performance compared to existing advanced methods. Further experiments show the advantages of our models in terms of computational complexity and data efficiency in transferring.
Scaling Laws For Diffusion Transformers
Diffusion transformers (DiT) have already achieved appealing synthesis and scaling properties in content recreation, e.g., image and video generation. However, scaling laws of DiT are less explored, which usually offer precise predictions regarding optimal model size and data requirements given a specific compute budget. Therefore, experiments across a broad range of compute budgets, from 1e17 to 6e18 FLOPs are conducted to confirm the existence of scaling laws in DiT for the first time. Concretely, the loss of pretraining DiT also follows a power-law relationship with the involved compute. Based on the scaling law, we can not only determine the optimal model size and required data but also accurately predict the text-to-image generation loss given a model with 1B parameters and a compute budget of 1e21 FLOPs. Additionally, we also demonstrate that the trend of pre-training loss matches the generation performances (e.g., FID), even across various datasets, which complements the mapping from compute to synthesis quality and thus provides a predictable benchmark that assesses model performance and data quality at a reduced cost.
Training-Free Watermarking for Autoregressive Image Generation
Invisible image watermarking can protect image ownership and prevent malicious misuse of visual generative models. However, existing generative watermarking methods are mainly designed for diffusion models while watermarking for autoregressive image generation models remains largely underexplored. We propose IndexMark, a training-free watermarking framework for autoregressive image generation models. IndexMark is inspired by the redundancy property of the codebook: replacing autoregressively generated indices with similar indices produces negligible visual differences. The core component in IndexMark is a simple yet effective match-then-replace method, which carefully selects watermark tokens from the codebook based on token similarity, and promotes the use of watermark tokens through token replacement, thereby embedding the watermark without affecting the image quality. Watermark verification is achieved by calculating the proportion of watermark tokens in generated images, with precision further improved by an Index Encoder. Furthermore, we introduce an auxiliary validation scheme to enhance robustness against cropping attacks. Experiments demonstrate that IndexMark achieves state-of-the-art performance in terms of image quality and verification accuracy, and exhibits robustness against various perturbations, including cropping, noises, Gaussian blur, random erasing, color jittering, and JPEG compression.
Scaling Laws for Autoregressive Generative Modeling
We identify empirical scaling laws for the cross-entropy loss in four domains: generative image modeling, video modeling, multimodal imageleftrightarrowtext models, and mathematical problem solving. In all cases autoregressive Transformers smoothly improve in performance as model size and compute budgets increase, following a power-law plus constant scaling law. The optimal model size also depends on the compute budget through a power-law, with exponents that are nearly universal across all data domains. The cross-entropy loss has an information theoretic interpretation as S(True) + D_{KL}(True||Model), and the empirical scaling laws suggest a prediction for both the true data distribution's entropy and the KL divergence between the true and model distributions. With this interpretation, billion-parameter Transformers are nearly perfect models of the YFCC100M image distribution downsampled to an 8times 8 resolution, and we can forecast the model size needed to achieve any given reducible loss (ie D_{KL}) in nats/image for other resolutions. We find a number of additional scaling laws in specific domains: (a) we identify a scaling relation for the mutual information between captions and images in multimodal models, and show how to answer the question "Is a picture worth a thousand words?"; (b) in the case of mathematical problem solving, we identify scaling laws for model performance when extrapolating beyond the training distribution; (c) we finetune generative image models for ImageNet classification and find smooth scaling of the classification loss and error rate, even as the generative loss levels off. Taken together, these results strengthen the case that scaling laws have important implications for neural network performance, including on downstream tasks.
The Shaped Transformer: Attention Models in the Infinite Depth-and-Width Limit
In deep learning theory, the covariance matrix of the representations serves as a proxy to examine the network's trainability. Motivated by the success of Transformers, we study the covariance matrix of a modified Softmax-based attention model with skip connections in the proportional limit of infinite-depth-and-width. We show that at initialization the limiting distribution can be described by a stochastic differential equation (SDE) indexed by the depth-to-width ratio. To achieve a well-defined stochastic limit, the Transformer's attention mechanism is modified by centering the Softmax output at identity, and scaling the Softmax logits by a width-dependent temperature parameter. We examine the stability of the network through the corresponding SDE, showing how the scale of both the drift and diffusion can be elegantly controlled with the aid of residual connections. The existence of a stable SDE implies that the covariance structure is well-behaved, even for very large depth and width, thus preventing the notorious issues of rank degeneracy in deep attention models. Finally, we show, through simulations, that the SDE provides a surprisingly good description of the corresponding finite-size model. We coin the name shaped Transformer for these architectural modifications.
Comparison of Time-Frequency Representations for Environmental Sound Classification using Convolutional Neural Networks
Recent successful applications of convolutional neural networks (CNNs) to audio classification and speech recognition have motivated the search for better input representations for more efficient training. Visual displays of an audio signal, through various time-frequency representations such as spectrograms offer a rich representation of the temporal and spectral structure of the original signal. In this letter, we compare various popular signal processing methods to obtain this representation, such as short-time Fourier transform (STFT) with linear and Mel scales, constant-Q transform (CQT) and continuous Wavelet transform (CWT), and assess their impact on the classification performance of two environmental sound datasets using CNNs. This study supports the hypothesis that time-frequency representations are valuable in learning useful features for sound classification. Moreover, the actual transformation used is shown to impact the classification accuracy, with Mel-scaled STFT outperforming the other discussed methods slightly and baseline MFCC features to a large degree. Additionally, we observe that the optimal window size during transformation is dependent on the characteristics of the audio signal and architecturally, 2D convolution yielded better results in most cases compared to 1D.
Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention
Transformers have emerged as a powerful tool for a broad range of natural language processing tasks. A key component that drives the impressive performance of Transformers is the self-attention mechanism that encodes the influence or dependence of other tokens on each specific token. While beneficial, the quadratic complexity of self-attention on the input sequence length has limited its application to longer sequences -- a topic being actively studied in the community. To address this limitation, we propose Nystr\"{o}mformer -- a model that exhibits favorable scalability as a function of sequence length. Our idea is based on adapting the Nystr\"{o}m method to approximate standard self-attention with O(n) complexity. The scalability of Nystr\"{o}mformer enables application to longer sequences with thousands of tokens. We perform evaluations on multiple downstream tasks on the GLUE benchmark and IMDB reviews with standard sequence length, and find that our Nystr\"{o}mformer performs comparably, or in a few cases, even slightly better, than standard self-attention. On longer sequence tasks in the Long Range Arena (LRA) benchmark, Nystr\"{o}mformer performs favorably relative to other efficient self-attention methods. Our code is available at https://github.com/mlpen/Nystromformer.
Adapting Self-Supervised Representations as a Latent Space for Efficient Generation
We introduce Representation Tokenizer (RepTok), a generative modeling framework that represents an image using a single continuous latent token obtained from self-supervised vision transformers. Building on a pre-trained SSL encoder, we fine-tune only the semantic token embedding and pair it with a generative decoder trained jointly using a standard flow matching objective. This adaptation enriches the token with low-level, reconstruction-relevant details, enabling faithful image reconstruction. To preserve the favorable geometry of the original SSL space, we add a cosine-similarity loss that regularizes the adapted token, ensuring the latent space remains smooth and suitable for generation. Our single-token formulation resolves spatial redundancies of 2D latent spaces and significantly reduces training costs. Despite its simplicity and efficiency, RepTok achieves competitive results on class-conditional ImageNet generation and naturally extends to text-to-image synthesis, reaching competitive zero-shot performance on MS-COCO under extremely limited training budgets. Our findings highlight the potential of fine-tuned SSL representations as compact and effective latent spaces for efficient generative modeling.
HTR-VT: Handwritten Text Recognition with Vision Transformer
We explore the application of Vision Transformer (ViT) for handwritten text recognition. The limited availability of labeled data in this domain poses challenges for achieving high performance solely relying on ViT. Previous transformer-based models required external data or extensive pre-training on large datasets to excel. To address this limitation, we introduce a data-efficient ViT method that uses only the encoder of the standard transformer. We find that incorporating a Convolutional Neural Network (CNN) for feature extraction instead of the original patch embedding and employ Sharpness-Aware Minimization (SAM) optimizer to ensure that the model can converge towards flatter minima and yield notable enhancements. Furthermore, our introduction of the span mask technique, which masks interconnected features in the feature map, acts as an effective regularizer. Empirically, our approach competes favorably with traditional CNN-based models on small datasets like IAM and READ2016. Additionally, it establishes a new benchmark on the LAM dataset, currently the largest dataset with 19,830 training text lines. The code is publicly available at: https://github.com/YutingLi0606/HTR-VT.
Pixel Adaptive Deep Unfolding Transformer for Hyperspectral Image Reconstruction
Hyperspectral Image (HSI) reconstruction has made gratifying progress with the deep unfolding framework by formulating the problem into a data module and a prior module. Nevertheless, existing methods still face the problem of insufficient matching with HSI data. The issues lie in three aspects: 1) fixed gradient descent step in the data module while the degradation of HSI is agnostic in the pixel-level. 2) inadequate prior module for 3D HSI cube. 3) stage interaction ignoring the differences in features at different stages. To address these issues, in this work, we propose a Pixel Adaptive Deep Unfolding Transformer (PADUT) for HSI reconstruction. In the data module, a pixel adaptive descent step is employed to focus on pixel-level agnostic degradation. In the prior module, we introduce the Non-local Spectral Transformer (NST) to emphasize the 3D characteristics of HSI for recovering. Moreover, inspired by the diverse expression of features in different stages and depths, the stage interaction is improved by the Fast Fourier Transform (FFT). Experimental results on both simulated and real scenes exhibit the superior performance of our method compared to state-of-the-art HSI reconstruction methods. The code is released at: https://github.com/MyuLi/PADUT.
HieraTok: Multi-Scale Visual Tokenizer Improves Image Reconstruction and Generation
In this work, we present HieraTok, a novel multi-scale Vision Transformer (ViT)-based tokenizer that overcomes the inherent limitation of modeling single-scale representations. This is realized through two key designs: (1) multi-scale downsampling applied to the token map generated by the tokenizer encoder, producing a sequence of multi-scale tokens, and (2) a scale-causal attention mechanism that enables the progressive flow of information from low-resolution global semantic features to high-resolution structural details. Coupling these designs, HieraTok achieves significant improvements in both image reconstruction and generation tasks. Under identical settings, the multi-scale visual tokenizer outperforms its single-scale counterpart by a 27.2\% improvement in rFID (1.47 rightarrow 1.07). When integrated into downstream generation frameworks, it achieves a 1.38times faster convergence rate and an 18.9\% boost in gFID (16.4 rightarrow 13.3), which may be attributed to the smoother and more uniformly distributed latent space. Furthermore, by scaling up the tokenizer's training, we demonstrate its potential by a sota rFID of 0.45 and a gFID of 1.82 among ViT tokenizers. To the best of our knowledge, we are the first to introduce multi-scale ViT-based tokenizer in image reconstruction and image generation. We hope our findings and designs advance the ViT-based tokenizers in visual generation tasks.
Enabling Efficient Equivariant Operations in the Fourier Basis via Gaunt Tensor Products
Developing equivariant neural networks for the E(3) group plays an important role in modeling 3D data across real-world applications. Enforcing this equivariance primarily involves the tensor products of irreducible representations (irreps). However, the computational complexity of such operations increases significantly as higher-order tensors are used. In this work, we propose a systematic approach to substantially accelerate the computation of the tensor products of irreps. We mathematically connect the commonly used Clebsch-Gordan coefficients to the Gaunt coefficients, which are integrals of products of three spherical harmonics. Through Gaunt coefficients, the tensor product of irreps becomes equivalent to the multiplication between spherical functions represented by spherical harmonics. This perspective further allows us to change the basis for the equivariant operations from spherical harmonics to a 2D Fourier basis. Consequently, the multiplication between spherical functions represented by a 2D Fourier basis can be efficiently computed via the convolution theorem and Fast Fourier Transforms. This transformation reduces the complexity of full tensor products of irreps from O(L^6) to O(L^3), where L is the max degree of irreps. Leveraging this approach, we introduce the Gaunt Tensor Product, which serves as a new method to construct efficient equivariant operations across different model architectures. Our experiments on the Open Catalyst Project and 3BPA datasets demonstrate both the increased efficiency and improved performance of our approach.
Terminal Velocity Matching
We propose Terminal Velocity Matching (TVM), a generalization of flow matching that enables high-fidelity one- and few-step generative modeling. TVM models the transition between any two diffusion timesteps and regularizes its behavior at its terminal time rather than at the initial time. We prove that TVM provides an upper bound on the 2-Wasserstein distance between data and model distributions when the model is Lipschitz continuous. However, since Diffusion Transformers lack this property, we introduce minimal architectural changes that achieve stable, single-stage training. To make TVM efficient in practice, we develop a fused attention kernel that supports backward passes on Jacobian-Vector Products, which scale well with transformer architectures. On ImageNet-256x256, TVM achieves 3.29 FID with a single function evaluation (NFE) and 1.99 FID with 4 NFEs. It similarly achieves 4.32 1-NFE FID and 2.94 4-NFE FID on ImageNet-512x512, representing state-of-the-art performance for one/few-step models from scratch.
Image-to-LaTeX Converter for Mathematical Formulas and Text
In this project, we train a vision encoder-decoder model to generate LaTeX code from images of mathematical formulas and text. Utilizing a diverse collection of image-to-LaTeX data, we build two models: a base model with a Swin Transformer encoder and a GPT-2 decoder, trained on machine-generated images, and a fine-tuned version enhanced with Low-Rank Adaptation (LoRA) trained on handwritten formulas. We then compare the BLEU performance of our specialized model on a handwritten test set with other similar models, such as Pix2Text, TexTeller, and Sumen. Through this project, we contribute open-source models for converting images to LaTeX and provide from-scratch code for building these models with distributed training and GPU optimizations.
YourMT3+: Multi-instrument Music Transcription with Enhanced Transformer Architectures and Cross-dataset Stem Augmentation
Multi-instrument music transcription aims to convert polyphonic music recordings into musical scores assigned to each instrument. This task is challenging for modeling as it requires simultaneously identifying multiple instruments and transcribing their pitch and precise timing, and the lack of fully annotated data adds to the training difficulties. This paper introduces YourMT3+, a suite of models for enhanced multi-instrument music transcription based on the recent language token decoding approach of MT3. We enhance its encoder by adopting a hierarchical attention transformer in the time-frequency domain and integrating a mixture of experts. To address data limitations, we introduce a new multi-channel decoding method for training with incomplete annotations and propose intra- and cross-stem augmentation for dataset mixing. Our experiments demonstrate direct vocal transcription capabilities, eliminating the need for voice separation pre-processors. Benchmarks across ten public datasets show our models' competitiveness with, or superiority to, existing transcription models. Further testing on pop music recordings highlights the limitations of current models. Fully reproducible code and datasets are available with demos at https://github.com/mimbres/YourMT3.
HQ-DiT: Efficient Diffusion Transformer with FP4 Hybrid Quantization
Diffusion Transformers (DiTs) have recently gained substantial attention in both industrial and academic fields for their superior visual generation capabilities, outperforming traditional diffusion models that use U-Net. However,the enhanced performance of DiTs also comes with high parameter counts and implementation costs, seriously restricting their use on resource-limited devices such as mobile phones. To address these challenges, we introduce the Hybrid Floating-point Quantization for DiT(HQ-DiT), an efficient post-training quantization method that utilizes 4-bit floating-point (FP) precision on both weights and activations for DiT inference. Compared to fixed-point quantization (e.g., INT8), FP quantization, complemented by our proposed clipping range selection mechanism, naturally aligns with the data distribution within DiT, resulting in a minimal quantization error. Furthermore, HQ-DiT also implements a universal identity mathematical transform to mitigate the serious quantization error caused by the outliers. The experimental results demonstrate that DiT can achieve extremely low-precision quantization (i.e., 4 bits) with negligible impact on performance. Our approach marks the first instance where both weights and activations in DiTs are quantized to just 4 bits, with only a 0.12 increase in sFID on ImageNet.
LoLA-SpecViT: Local Attention SwiGLU Vision Transformer with LoRA for Hyperspectral Imaging
Hyperspectral image classification remains a challenging task due to the high dimensionality of spectral data, significant inter-band redundancy, and the limited availability of annotated samples. While recent transformer-based models have improved the global modeling of spectral-spatial dependencies, their scalability and adaptability under label-scarce conditions remain limited. In this work, we propose LoLA-SpecViT(Low-rank adaptation Local Attention Spectral Vision Transformer), a lightweight spectral vision transformer that addresses these limitations through a parameter-efficient architecture tailored to the unique characteristics of hyperspectral imagery. Our model combines a 3D convolutional spectral front-end with local window-based self-attention, enhancing both spectral feature extraction and spatial consistency while reducing computational complexity. To further improve adaptability, we integrate low-rank adaptation (LoRA) into attention and projection layers, enabling fine-tuning with over 80\% fewer trainable parameters. A novel cyclical learning rate scheduler modulates LoRA adaptation strength during training, improving convergence and generalisation. Extensive experiments on three benchmark datasets WHU-Hi LongKou, WHU-Hi HongHu, and Salinas demonstrate that LoLA-SpecViT consistently outperforms state-of-the-art baselines, achieving up to 99.91\% accuracy with substantially fewer parameters and enhanced robustness under low-label regimes. The proposed framework provides a scalable and generalizable solution for real-world HSI applications in agriculture, environmental monitoring, and remote sensing analytics. Our code is available in the following https://github.com/FadiZidiDz/LoLA-SpecViT{GitHub Repository}.
