Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeA Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT
Pretrained Foundation Models (PFMs) are regarded as the foundation for various downstream tasks with different data modalities. A PFM (e.g., BERT, ChatGPT, and GPT-4) is trained on large-scale data which provides a reasonable parameter initialization for a wide range of downstream applications. BERT learns bidirectional encoder representations from Transformers, which are trained on large datasets as contextual language models. Similarly, the generative pretrained transformer (GPT) method employs Transformers as the feature extractor and is trained using an autoregressive paradigm on large datasets. Recently, ChatGPT shows promising success on large language models, which applies an autoregressive language model with zero shot or few shot prompting. The remarkable achievements of PFM have brought significant breakthroughs to various fields of AI. Numerous studies have proposed different methods, raising the demand for an updated survey. This study provides a comprehensive review of recent research advancements, challenges, and opportunities for PFMs in text, image, graph, as well as other data modalities. The review covers the basic components and existing pretraining methods used in natural language processing, computer vision, and graph learning. Additionally, it explores advanced PFMs used for different data modalities and unified PFMs that consider data quality and quantity. The review also discusses research related to the fundamentals of PFMs, such as model efficiency and compression, security, and privacy. Finally, the study provides key implications, future research directions, challenges, and open problems in the field of PFMs. Overall, this survey aims to shed light on the research of the PFMs on scalability, security, logical reasoning ability, cross-domain learning ability, and the user-friendly interactive ability for artificial general intelligence.
Your Transformer May Not be as Powerful as You Expect
Relative Positional Encoding (RPE), which encodes the relative distance between any pair of tokens, is one of the most successful modifications to the original Transformer. As far as we know, theoretical understanding of the RPE-based Transformers is largely unexplored. In this work, we mathematically analyze the power of RPE-based Transformers regarding whether the model is capable of approximating any continuous sequence-to-sequence functions. One may naturally assume the answer is in the affirmative -- RPE-based Transformers are universal function approximators. However, we present a negative result by showing there exist continuous sequence-to-sequence functions that RPE-based Transformers cannot approximate no matter how deep and wide the neural network is. One key reason lies in that most RPEs are placed in the softmax attention that always generates a right stochastic matrix. This restricts the network from capturing positional information in the RPEs and limits its capacity. To overcome the problem and make the model more powerful, we first present sufficient conditions for RPE-based Transformers to achieve universal function approximation. With the theoretical guidance, we develop a novel attention module, called Universal RPE-based (URPE) Attention, which satisfies the conditions. Therefore, the corresponding URPE-based Transformers become universal function approximators. Extensive experiments covering typical architectures and tasks demonstrate that our model is parameter-efficient and can achieve superior performance to strong baselines in a wide range of applications. The code will be made publicly available at https://github.com/lsj2408/URPE.
Foundation Transformers
A big convergence of model architectures across language, vision, speech, and multimodal is emerging. However, under the same name "Transformers", the above areas use different implementations for better performance, e.g., Post-LayerNorm for BERT, and Pre-LayerNorm for GPT and vision Transformers. We call for the development of Foundation Transformer for true general-purpose modeling, which serves as a go-to architecture for various tasks and modalities with guaranteed training stability. In this work, we introduce a Transformer variant, named Magneto, to fulfill the goal. Specifically, we propose Sub-LayerNorm for good expressivity, and the initialization strategy theoretically derived from DeepNet for stable scaling up. Extensive experiments demonstrate its superior performance and better stability than the de facto Transformer variants designed for various applications, including language modeling (i.e., BERT, and GPT), machine translation, vision pretraining (i.e., BEiT), speech recognition, and multimodal pretraining (i.e., BEiT-3).
PDE-Transformer: Efficient and Versatile Transformers for Physics Simulations
We introduce PDE-Transformer, an improved transformer-based architecture for surrogate modeling of physics simulations on regular grids. We combine recent architectural improvements of diffusion transformers with adjustments specific for large-scale simulations to yield a more scalable and versatile general-purpose transformer architecture, which can be used as the backbone for building large-scale foundation models in physical sciences. We demonstrate that our proposed architecture outperforms state-of-the-art transformer architectures for computer vision on a large dataset of 16 different types of PDEs. We propose to embed different physical channels individually as spatio-temporal tokens, which interact via channel-wise self-attention. This helps to maintain a consistent information density of tokens when learning multiple types of PDEs simultaneously. We demonstrate that our pre-trained models achieve improved performance on several challenging downstream tasks compared to training from scratch and also beat other foundation model architectures for physics simulations.
Scalable Transformer for PDE Surrogate Modeling
Transformer has shown state-of-the-art performance on various applications and has recently emerged as a promising tool for surrogate modeling of partial differential equations (PDEs). Despite the introduction of linear-complexity variant, applying attention to a large number of grid points can result in instability and is still expensive to compute. In this work, we propose Factorized Transformer(FactFormer), which is based on an axial factorized kernel integral. Concretely, we introduce a learnable projection operator that decomposes the input function into multiple sub-functions with one-dimensional domain. These sub-functions are then evaluated and used to compute the instance-based kernel with an axial factorized scheme. We showcase that the proposed model is able to simulate 2D Kolmogorov flow on a 256 by 256 grid and 3D smoke buoyancy on a 64 by 64 by 64 grid with good accuracy and efficiency. In addition, we find out that with the factorization scheme, the attention matrices enjoy a more compact spectrum than full softmax-free attention matrices.
A Survey of Techniques for Optimizing Transformer Inference
Recent years have seen a phenomenal rise in performance and applications of transformer neural networks. The family of transformer networks, including Bidirectional Encoder Representations from Transformer (BERT), Generative Pretrained Transformer (GPT) and Vision Transformer (ViT), have shown their effectiveness across Natural Language Processing (NLP) and Computer Vision (CV) domains. Transformer-based networks such as ChatGPT have impacted the lives of common men. However, the quest for high predictive performance has led to an exponential increase in transformers' memory and compute footprint. Researchers have proposed techniques to optimize transformer inference at all levels of abstraction. This paper presents a comprehensive survey of techniques for optimizing the inference phase of transformer networks. We survey techniques such as knowledge distillation, pruning, quantization, neural architecture search and lightweight network design at the algorithmic level. We further review hardware-level optimization techniques and the design of novel hardware accelerators for transformers. We summarize the quantitative results on the number of parameters/FLOPs and accuracy of several models/techniques to showcase the tradeoff exercised by them. We also outline future directions in this rapidly evolving field of research. We believe that this survey will educate both novice and seasoned researchers and also spark a plethora of research efforts in this field.
Investigating the Role of Feed-Forward Networks in Transformers Using Parallel Attention and Feed-Forward Net Design
This paper investigates the key role of Feed-Forward Networks (FFNs) in transformer models by utilizing the Parallel Attention and Feed-Forward Net Design (PAF) architecture, and comparing it to their Series Attention and Feed-Forward Net Design (SAF) counterparts. Central to the effectiveness of PAF are two main assumptions regarding the FFN block and the attention block within a layer: 1) the primary function of the FFN block is to maintain isotropy among token embeddings and prevent their degeneration, and 2) the residual norm computed in the attention block is substantially smaller than the input token embedding norm. To empirically validate these assumptions, we train PAF variants of two large language models (RoBERTa-large and bert-large-uncased). Our results demonstrate that both assumptions hold true in the PAF design. This study contributes to a deeper understanding of the roles and interactions between FFNs and self-attention mechanisms in transformer architectures.
On Learning the Transformer Kernel
In this work we introduce KERNELIZED TRANSFORMER, a generic, scalable, data driven framework for learning the kernel function in Transformers. Our framework approximates the Transformer kernel as a dot product between spectral feature maps and learns the kernel by learning the spectral distribution. This not only helps in learning a generic kernel end-to-end, but also reduces the time and space complexity of Transformers from quadratic to linear. We show that KERNELIZED TRANSFORMERS achieve performance comparable to existing efficient Transformer architectures, both in terms of accuracy as well as computational efficiency. Our study also demonstrates that the choice of the kernel has a substantial impact on performance, and kernel learning variants are competitive alternatives to fixed kernel Transformers, both in long as well as short sequence tasks.
Pseudo Relevance Feedback with Deep Language Models and Dense Retrievers: Successes and Pitfalls
Pseudo Relevance Feedback (PRF) is known to improve the effectiveness of bag-of-words retrievers. At the same time, deep language models have been shown to outperform traditional bag-of-words rerankers. However, it is unclear how to integrate PRF directly with emergent deep language models. In this article, we address this gap by investigating methods for integrating PRF signals into rerankers and dense retrievers based on deep language models. We consider text-based and vector-based PRF approaches, and investigate different ways of combining and scoring relevance signals. An extensive empirical evaluation was conducted across four different datasets and two task settings (retrieval and ranking). Text-based PRF results show that the use of PRF had a mixed effect on deep rerankers across different datasets. We found that the best effectiveness was achieved when (i) directly concatenating each PRF passage with the query, searching with the new set of queries, and then aggregating the scores; (ii) using Borda to aggregate scores from PRF runs. Vector-based PRF results show that the use of PRF enhanced the effectiveness of deep rerankers and dense retrievers over several evaluation metrics. We found that higher effectiveness was achieved when (i) the query retains either the majority or the same weight within the PRF mechanism, and (ii) a shallower PRF signal (i.e., a smaller number of top-ranked passages) was employed, rather than a deeper signal. Our vector-based PRF method is computationally efficient; thus this represents a general PRF method others can use with deep rerankers and dense retrievers.
PredFormer: Transformers Are Effective Spatial-Temporal Predictive Learners
Spatiotemporal predictive learning methods generally fall into two categories: recurrent-based approaches, which face challenges in parallelization and performance, and recurrent-free methods, which employ convolutional neural networks (CNNs) as encoder-decoder architectures. These methods benefit from strong inductive biases but often at the expense of scalability and generalization. This paper proposes PredFormer, a pure transformer-based framework for spatiotemporal predictive learning. Motivated by the Vision Transformers (ViT) design, PredFormer leverages carefully designed Gated Transformer blocks, following a comprehensive analysis of 3D attention mechanisms, including full-, factorized-, and interleaved-spatial-temporal attention. With its recurrent-free, transformer-based design, PredFormer is both simple and efficient, significantly outperforming previous methods by large margins. Extensive experiments on synthetic and real-world datasets demonstrate that PredFormer achieves state-of-the-art performance. On Moving MNIST, PredFormer achieves a 51.3% reduction in MSE relative to SimVP. For TaxiBJ, the model decreases MSE by 33.1% and boosts FPS from 533 to 2364. Additionally, on WeatherBench, it reduces MSE by 11.1% while enhancing FPS from 196 to 404. These performance gains in both accuracy and efficiency demonstrate PredFormer's potential for real-world applications. The source code will be released at https://github.com/yyyujintang/PredFormer .
A Practical Survey on Faster and Lighter Transformers
Recurrent neural networks are effective models to process sequences. However, they are unable to learn long-term dependencies because of their inherent sequential nature. As a solution, Vaswani et al. introduced the Transformer, a model solely based on the attention mechanism that is able to relate any two positions of the input sequence, hence modelling arbitrary long dependencies. The Transformer has improved the state-of-the-art across numerous sequence modelling tasks. However, its effectiveness comes at the expense of a quadratic computational and memory complexity with respect to the sequence length, hindering its adoption. Fortunately, the deep learning community has always been interested in improving the models' efficiency, leading to a plethora of solutions such as parameter sharing, pruning, mixed-precision, and knowledge distillation. Recently, researchers have directly addressed the Transformer's limitation by designing lower-complexity alternatives such as the Longformer, Reformer, Linformer, and Performer. However, due to the wide range of solutions, it has become challenging for researchers and practitioners to determine which methods to apply in practice in order to meet the desired trade-off between capacity, computation, and memory. This survey addresses this issue by investigating popular approaches to make Transformers faster and lighter and by providing a comprehensive explanation of the methods' strengths, limitations, and underlying assumptions.
X-Pruner: eXplainable Pruning for Vision Transformers
Recently vision transformer models have become prominent models for a range of tasks. These models, however, usually suffer from intensive computational costs and heavy memory requirements, making them impractical for deployment on edge platforms. Recent studies have proposed to prune transformers in an unexplainable manner, which overlook the relationship between internal units of the model and the target class, thereby leading to inferior performance. To alleviate this problem, we propose a novel explainable pruning framework dubbed X-Pruner, which is designed by considering the explainability of the pruning criterion. Specifically, to measure each prunable unit's contribution to predicting each target class, a novel explainability-aware mask is proposed and learned in an end-to-end manner. Then, to preserve the most informative units and learn the layer-wise pruning rate, we adaptively search the layer-wise threshold that differentiates between unpruned and pruned units based on their explainability-aware mask values. To verify and evaluate our method, we apply the X-Pruner on representative transformer models including the DeiT and Swin Transformer. Comprehensive simulation results demonstrate that the proposed X-Pruner outperforms the state-of-the-art black-box methods with significantly reduced computational costs and slight performance degradation.
PINNsFormer: A Transformer-Based Framework For Physics-Informed Neural Networks
Physics-Informed Neural Networks (PINNs) have emerged as a promising deep learning framework for approximating numerical solutions to partial differential equations (PDEs). However, conventional PINNs, relying on multilayer perceptrons (MLP), neglect the crucial temporal dependencies inherent in practical physics systems and thus fail to propagate the initial condition constraints globally and accurately capture the true solutions under various scenarios. In this paper, we introduce a novel Transformer-based framework, termed PINNsFormer, designed to address this limitation. PINNsFormer can accurately approximate PDE solutions by utilizing multi-head attention mechanisms to capture temporal dependencies. PINNsFormer transforms point-wise inputs into pseudo sequences and replaces point-wise PINNs loss with a sequential loss. Additionally, it incorporates a novel activation function, Wavelet, which anticipates Fourier decomposition through deep neural networks. Empirical results demonstrate that PINNsFormer achieves superior generalization ability and accuracy across various scenarios, including PINNs failure modes and high-dimensional PDEs. Moreover, PINNsFormer offers flexibility in integrating existing learning schemes for PINNs, further enhancing its performance.
AxFormer: Accuracy-driven Approximation of Transformers for Faster, Smaller and more Accurate NLP Models
Transformers have greatly advanced the state-of-the-art in Natural Language Processing (NLP) in recent years, but present very large computation and storage requirements. We observe that the design process of Transformers (pre-train a foundation model on a large dataset in a self-supervised manner, and subsequently fine-tune it for different downstream tasks) leads to task-specific models that are highly over-parameterized, adversely impacting both accuracy and inference efficiency. We propose AxFormer, a systematic framework that applies accuracy-driven approximations to create optimized transformer models for a given downstream task. AxFormer combines two key optimizations -- accuracy-driven pruning and selective hard attention. Accuracy-driven pruning identifies and removes parts of the fine-tuned transformer that hinder performance on the given downstream task. Sparse hard-attention optimizes attention blocks in selected layers by eliminating irrelevant word aggregations, thereby helping the model focus only on the relevant parts of the input. In effect, AxFormer leads to models that are more accurate, while also being faster and smaller. Our experiments on GLUE and SQUAD tasks show that AxFormer models are up to 4.5% more accurate, while also being up to 2.5X faster and up to 3.2X smaller than conventional fine-tuned models. In addition, we demonstrate that AxFormer can be combined with previous efforts such as distillation or quantization to achieve further efficiency gains.
Can pruning make Large Language Models more efficient?
Transformer models have revolutionized natural language processing with their unparalleled ability to grasp complex contextual relationships. However, the vast number of parameters in these models has raised concerns regarding computational efficiency, environmental impact, and deployability on resource-limited platforms. To address these challenges, this paper investigates the application of weight pruning-a strategic reduction of model parameters based on their significance-as an optimization strategy for Transformer architectures. Through extensive experimentation, we explore various pruning methodologies, highlighting their impact on model performance, size, and computational demands. Our findings suggest that with judicious selection of pruning hyperparameters, significant reductions in model size are attainable without considerable compromise on performance. Moreover, when coupled with post-pruning fine-tuning strategies, some pruned models even exhibit enhanced generalization capabilities. This work seeks to bridge the gap between model efficiency and performance, paving the way for more scalable and environmentally responsible deep learning applications.
Zero-TPrune: Zero-Shot Token Pruning through Leveraging of the Attention Graph in Pre-Trained Transformers
Deployment of Transformer models on edge devices is becoming increasingly challenging due to the exponentially growing inference cost that scales quadratically with the number of tokens in the input sequence. Token pruning is an emerging solution to address this challenge due to its ease of deployment on various Transformer backbones. However, most token pruning methods require computationally expensive fine-tuning, which is undesirable in many edge deployment cases. In this work, we propose Zero-TPrune, the first zero-shot method that considers both the importance and similarity of tokens in performing token pruning. It leverages the attention graph of pre-trained Transformer models to produce an importance distribution for tokens via our proposed Weighted Page Rank (WPR) algorithm. This distribution further guides token partitioning for efficient similarity-based pruning. Due to the elimination of the fine-tuning overhead, Zero-TPrune can prune large models at negligible computational cost, switch between different pruning configurations at no computational cost, and perform hyperparameter tuning efficiently. We evaluate the performance of Zero-TPrune on vision tasks by applying it to various vision Transformer backbones and testing them on ImageNet. Without any fine-tuning, Zero-TPrune reduces the FLOPs cost of DeiT-S by 34.7\% and improves its throughput by 45.3\% with only 0.4\% accuracy loss. Compared with state-of-the-art pruning methods that require fine-tuning, Zero-TPrune not only eliminates the need for fine-tuning after pruning but also does so with only 0.1\% accuracy loss. Compared with state-of-the-art fine-tuning-free pruning methods, Zero-TPrune reduces accuracy loss by up to 49\% with the same or higher throughput.
Factorization Vision Transformer: Modeling Long Range Dependency with Local Window Cost
Transformers have astounding representational power but typically consume considerable computation which is quadratic with image resolution. The prevailing Swin transformer reduces computational costs through a local window strategy. However, this strategy inevitably causes two drawbacks: (1) the local window-based self-attention hinders global dependency modeling capability; (2) recent studies point out that local windows impair robustness. To overcome these challenges, we pursue a preferable trade-off between computational cost and performance. Accordingly, we propose a novel factorization self-attention mechanism (FaSA) that enjoys both the advantages of local window cost and long-range dependency modeling capability. By factorizing the conventional attention matrix into sparse sub-attention matrices, FaSA captures long-range dependencies while aggregating mixed-grained information at a computational cost equivalent to the local window-based self-attention. Leveraging FaSA, we present the factorization vision transformer (FaViT) with a hierarchical structure. FaViT achieves high performance and robustness, with linear computational complexity concerning input image spatial resolution. Extensive experiments have shown FaViT's advanced performance in classification and downstream tasks. Furthermore, it also exhibits strong model robustness to corrupted and biased data and hence demonstrates benefits in favor of practical applications. In comparison to the baseline model Swin-T, our FaViT-B2 significantly improves classification accuracy by 1% and robustness by 7%, while reducing model parameters by 14%. Our code will soon be publicly available at https://github.com/q2479036243/FaViT.
Fcaformer: Forward Cross Attention in Hybrid Vision Transformer
Currently, one main research line in designing a more efficient vision transformer is reducing the computational cost of self attention modules by adopting sparse attention or using local attention windows. In contrast, we propose a different approach that aims to improve the performance of transformer-based architectures by densifying the attention pattern. Specifically, we proposed forward cross attention for hybrid vision transformer (FcaFormer), where tokens from previous blocks in the same stage are secondary used. To achieve this, the FcaFormer leverages two innovative components: learnable scale factors (LSFs) and a token merge and enhancement module (TME). The LSFs enable efficient processing of cross tokens, while the TME generates representative cross tokens. By integrating these components, the proposed FcaFormer enhances the interactions of tokens across blocks with potentially different semantics, and encourages more information flows to the lower levels. Based on the forward cross attention (Fca), we have designed a series of FcaFormer models that achieve the best trade-off between model size, computational cost, memory cost, and accuracy. For example, without the need for knowledge distillation to strengthen training, our FcaFormer achieves 83.1% top-1 accuracy on Imagenet with only 16.3 million parameters and about 3.6 billion MACs. This saves almost half of the parameters and a few computational costs while achieving 0.7% higher accuracy compared to distilled EfficientFormer.
Mitigating Transformer Overconfidence via Lipschitz Regularization
Though Transformers have achieved promising results in many computer vision tasks, they tend to be over-confident in predictions, as the standard Dot Product Self-Attention (DPSA) can barely preserve distance for the unbounded input domain. In this work, we fill this gap by proposing a novel Lipschitz Regularized Transformer (LRFormer). Specifically, we present a new similarity function with the distance within Banach Space to ensure the Lipschitzness and also regularize the term by a contractive Lipschitz Bound. The proposed method is analyzed with a theoretical guarantee, providing a rigorous basis for its effectiveness and reliability. Extensive experiments conducted on standard vision benchmarks demonstrate that our method outperforms the state-of-the-art single forward pass approaches in prediction, calibration, and uncertainty estimation.
Revisiting LRP: Positional Attribution as the Missing Ingredient for Transformer Explainability
The development of effective explainability tools for Transformers is a crucial pursuit in deep learning research. One of the most promising approaches in this domain is Layer-wise Relevance Propagation (LRP), which propagates relevance scores backward through the network to the input space by redistributing activation values based on predefined rules. However, existing LRP-based methods for Transformer explainability entirely overlook a critical component of the Transformer architecture: its positional encoding (PE), resulting in violation of the conservation property, and the loss of an important and unique type of relevance, which is also associated with structural and positional features. To address this limitation, we reformulate the input space for Transformer explainability as a set of position-token pairs. This allows us to propose specialized theoretically-grounded LRP rules designed to propagate attributions across various positional encoding methods, including Rotary, Learnable, and Absolute PE. Extensive experiments with both fine-tuned classifiers and zero-shot foundation models, such as LLaMA 3, demonstrate that our method significantly outperforms the state-of-the-art in both vision and NLP explainability tasks. Our code is publicly available.
Foundation Models for Time Series: A Survey
Transformer-based foundation models have emerged as a dominant paradigm in time series analysis, offering unprecedented capabilities in tasks such as forecasting, anomaly detection, classification, trend analysis and many more time series analytical tasks. This survey provides a comprehensive overview of the current state of the art pre-trained foundation models, introducing a novel taxonomy to categorize them across several dimensions. Specifically, we classify models by their architecture design, distinguishing between those leveraging patch-based representations and those operating directly on raw sequences. The taxonomy further includes whether the models provide probabilistic or deterministic predictions, and whether they are designed to work with univariate time series or can handle multivariate time series out of the box. Additionally, the taxonomy encompasses model scale and complexity, highlighting differences between lightweight architectures and large-scale foundation models. A unique aspect of this survey is its categorization by the type of objective function employed during training phase. By synthesizing these perspectives, this survey serves as a resource for researchers and practitioners, providing insights into current trends and identifying promising directions for future research in transformer-based time series modeling.
Stable, Fast and Accurate: Kernelized Attention with Relative Positional Encoding
The attention module, which is a crucial component in Transformer, cannot scale efficiently to long sequences due to its quadratic complexity. Many works focus on approximating the dot-then-exponentiate softmax function in the original attention, leading to sub-quadratic or even linear-complexity Transformer architectures. However, we show that these methods cannot be applied to more powerful attention modules that go beyond the dot-then-exponentiate style, e.g., Transformers with relative positional encoding (RPE). Since in many state-of-the-art models, relative positional encoding is used as default, designing efficient Transformers that can incorporate RPE is appealing. In this paper, we propose a novel way to accelerate attention calculation for Transformers with RPE on top of the kernelized attention. Based upon the observation that relative positional encoding forms a Toeplitz matrix, we mathematically show that kernelized attention with RPE can be calculated efficiently using Fast Fourier Transform (FFT). With FFT, our method achieves O(nlog n) time complexity. Interestingly, we further demonstrate that properly using relative positional encoding can mitigate the training instability problem of vanilla kernelized attention. On a wide range of tasks, we empirically show that our models can be trained from scratch without any optimization issues. The learned model performs better than many efficient Transformer variants and is faster than standard Transformer in the long-sequence regime.
Vcc: Scaling Transformers to 128K Tokens or More by Prioritizing Important Tokens
Transformer models are foundational to natural language processing (NLP) and computer vision. Despite various recent works devoted to reducing the quadratic cost of such models (as a function of the sequence length n), dealing with ultra long sequences efficiently (e.g., with more than 16K tokens) remains challenging. Applications such as answering questions based on an entire book or summarizing a scientific article are inefficient or infeasible. In this paper, we propose to significantly reduce the dependency of a Transformer model's complexity on n, by compressing the input into a representation whose size r is independent of n at each layer. Specifically, by exploiting the fact that in many tasks, only a small subset of special tokens (we call VIP-tokens) are most relevant to the final prediction, we propose a VIP-token centric compression (Vcc) scheme which selectively compresses the input sequence based on their impact on approximating the representation of these VIP-tokens. Compared with competitive baselines, the proposed algorithm not only is efficient (achieving more than 3times efficiency improvement compared to baselines on 4K and 16K lengths), but also achieves competitive or better performance on a large number of tasks. Further, we show that our algorithm can be scaled to 128K tokens (or more) while consistently offering accuracy improvement.
Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition
Transformers have recently dominated the ASR field. Although able to yield good performance, they involve an autoregressive (AR) decoder to generate tokens one by one, which is computationally inefficient. To speed up inference, non-autoregressive (NAR) methods, e.g. single-step NAR, were designed, to enable parallel generation. However, due to an independence assumption within the output tokens, performance of single-step NAR is inferior to that of AR models, especially with a large-scale corpus. There are two challenges to improving single-step NAR: Firstly to accurately predict the number of output tokens and extract hidden variables; secondly, to enhance modeling of interdependence between output tokens. To tackle both challenges, we propose a fast and accurate parallel transformer, termed Paraformer. This utilizes a continuous integrate-and-fire based predictor to predict the number of tokens and generate hidden variables. A glancing language model (GLM) sampler then generates semantic embeddings to enhance the NAR decoder's ability to model context interdependence. Finally, we design a strategy to generate negative samples for minimum word error rate training to further improve performance. Experiments using the public AISHELL-1, AISHELL-2 benchmark, and an industrial-level 20,000 hour task demonstrate that the proposed Paraformer can attain comparable performance to the state-of-the-art AR transformer, with more than 10x speedup.
VTrans: Accelerating Transformer Compression with Variational Information Bottleneck based Pruning
In recent years, there has been a growing emphasis on compressing large pre-trained transformer models for resource-constrained devices. However, traditional pruning methods often leave the embedding layer untouched, leading to model over-parameterization. Additionally, they require extensive compression time with large datasets to maintain performance in pruned models. To address these challenges, we propose VTrans, an iterative pruning framework guided by the Variational Information Bottleneck (VIB) principle. Our method compresses all structural components, including embeddings, attention heads, and layers using VIB-trained masks. This approach retains only essential weights in each layer, ensuring compliance with specified model size or computational constraints. Notably, our method achieves upto 70% more compression than prior state-of-the-art approaches, both task-agnostic and task-specific. We further propose faster variants of our method: Fast-VTrans utilizing only 3% of the data and Faster-VTrans, a time efficient alternative that involves exclusive finetuning of VIB masks, accelerating compression by upto 25 times with minimal performance loss compared to previous methods. Extensive experiments on BERT, ROBERTa, and GPT-2 models substantiate the efficacy of our method. Moreover, our method demonstrates scalability in compressing large models such as LLaMA-2-7B, achieving superior performance compared to previous pruning methods. Additionally, we use attention-based probing to qualitatively assess model redundancy and interpret the efficiency of our approach. Notably, our method considers heads with high attention to special and current tokens in un-pruned model as foremost candidates for pruning while retained heads are observed to attend more to task-critical keywords.
FAST: Factorizable Attention for Speeding up Transformers
Motivated by the factorization inherent in the original fast multipole method and the improved fast Gauss transform we introduce a factorable form of attention that operates efficiently in high dimensions. This approach reduces the computational and memory complexity of the attention mechanism in transformers from O(N^2) to O(N). In comparison to previous attempts, our work presents a linearly scaled attention mechanism that maintains the full representation of the attention matrix without compromising on sparsification and incorporates the all-to-all relationship between tokens. We explore the properties of our new attention metric and conduct tests in various standard settings. Results indicate that our attention mechanism has a robust performance and holds significant promise for diverse applications where self-attention is used.
Learned Token Pruning for Transformers
Deploying transformer models in practice is challenging due to their inference cost, which scales quadratically with input sequence length. To address this, we present a novel Learned Token Pruning (LTP) method which adaptively removes unimportant tokens as an input sequence passes through transformer layers. In particular, LTP prunes tokens with an attention score below a threshold value which is learned for each layer during training. Our threshold-based method allows the length of the pruned sequence to vary adaptively based on the input sequence, and avoids algorithmically expensive operations such as top-k token selection. We extensively test the performance of LTP on GLUE tasks and show that our method outperforms the prior state-of-the-art token pruning methods by up to ~2.5% higher accuracy with the same amount of FLOPs. In particular, LTP achieves up to 2.1x FLOPs reduction with less than 1% accuracy drop, which results in up to 1.9x and 2.0x throughput improvement on Intel Haswell CPUs and NVIDIA V100 GPUs, respectively. Furthermore, we demonstrate that LTP is more robust than prior methods to variations on input sentence lengths. Our code has been developed in PyTorch and has been open-sourced.
RoFormer: Enhanced Transformer with Rotary Position Embedding
Position encoding recently has shown effective in the transformer architecture. It enables valuable supervision for dependency modeling between elements at different positions of the sequence. In this paper, we first investigate various methods to integrate positional information into the learning process of transformer-based language models. Then, we propose a novel method named Rotary Position Embedding(RoPE) to effectively leverage the positional information. Specifically, the proposed RoPE encodes the absolute position with a rotation matrix and meanwhile incorporates the explicit relative position dependency in self-attention formulation. Notably, RoPE enables valuable properties, including the flexibility of sequence length, decaying inter-token dependency with increasing relative distances, and the capability of equipping the linear self-attention with relative position encoding. Finally, we evaluate the enhanced transformer with rotary position embedding, also called RoFormer, on various long text classification benchmark datasets. Our experiments show that it consistently overcomes its alternatives. Furthermore, we provide a theoretical analysis to explain some experimental results. RoFormer is already integrated into Huggingface: https://huggingface.co/docs/transformers/model_doc/roformer.
Conditional Positional Encodings for Vision Transformers
We propose a conditional positional encoding (CPE) scheme for vision Transformers. Unlike previous fixed or learnable positional encodings, which are pre-defined and independent of input tokens, CPE is dynamically generated and conditioned on the local neighborhood of the input tokens. As a result, CPE can easily generalize to the input sequences that are longer than what the model has ever seen during training. Besides, CPE can keep the desired translation-invariance in the image classification task, resulting in improved performance. We implement CPE with a simple Position Encoding Generator (PEG) to get seamlessly incorporated into the current Transformer framework. Built on PEG, we present Conditional Position encoding Vision Transformer (CPVT). We demonstrate that CPVT has visually similar attention maps compared to those with learned positional encodings and delivers outperforming results. Our code is available at https://github.com/Meituan-AutoML/CPVT .
Head-wise Adaptive Rotary Positional Encoding for Fine-Grained Image Generation
Transformers rely on explicit positional encoding to model structure in data. While Rotary Position Embedding (RoPE) excels in 1D domains, its application to image generation reveals significant limitations such as fine-grained spatial relation modeling, color cues, and object counting. This paper identifies key limitations of standard multi-dimensional RoPE-rigid frequency allocation, axis-wise independence, and uniform head treatment-in capturing the complex structural biases required for fine-grained image generation. We propose HARoPE, a head-wise adaptive extension that inserts a learnable linear transformation parameterized via singular value decomposition (SVD) before the rotary mapping. This lightweight modification enables dynamic frequency reallocation, semantic alignment of rotary planes, and head-specific positional receptive fields while rigorously preserving RoPE's relative-position property. Extensive experiments on class-conditional ImageNet and text-to-image generation (Flux and MMDiT) demonstrate that HARoPE consistently improves performance over strong RoPE baselines and other extensions. The method serves as an effective drop-in replacement, offering a principled and adaptable solution for enhancing positional awareness in transformer-based image generative models.
PartialFormer: Modeling Part Instead of Whole
The design choices in Transformer feed-forward neural networks have resulted in significant computational and parameter overhead. In this work, we emphasize the importance of hidden dimension in designing lightweight FFNs, a factor often overlooked in previous architectures. Guided by this principle, we introduce PartialFormer, a parameter-efficient Transformer architecture utilizing multiple smaller FFNs to reduce parameters and computation while maintaining essential hidden dimensions. These smaller FFNs are integrated into a multi-head attention system to enable effective collaboration. We also propose a tailored head scaling strategy to enhance PartialFormer's capabilities. Furthermore, we present a residual-like attention calculation to improve depth scaling within PartialFormer. Extensive experiments on 9 translation tasks and 1 abstractive summarization task validate the effectiveness of our PartialFormer approach. Our code would be available at: https://github.com/zhengkid/PartialFormer.
An Attention Free Transformer
We introduce Attention Free Transformer (AFT), an efficient variant of Transformers that eliminates the need for dot product self attention. In an AFT layer, the key and value are first combined with a set of learned position biases, the result of which is multiplied with the query in an element-wise fashion. This new operation has a memory complexity linear w.r.t. both the context size and the dimension of features, making it compatible to both large input and model sizes. We also introduce AFT-local and AFT-conv, two model variants that take advantage of the idea of locality and spatial weight sharing while maintaining global connectivity. We conduct extensive experiments on two autoregressive modeling tasks (CIFAR10 and Enwik8) as well as an image recognition task (ImageNet-1K classification). We show that AFT demonstrates competitive performance on all the benchmarks, while providing excellent efficiency at the same time.
Functional Interpolation for Relative Positions Improves Long Context Transformers
Preventing the performance decay of Transformers on inputs longer than those used for training has been an important challenge in extending the context length of these models. Though the Transformer architecture has fundamentally no limits on the input sequence lengths it can process, the choice of position encoding used during training can limit the performance of these models on longer inputs. We propose a novel functional relative position encoding with progressive interpolation, FIRE, to improve Transformer generalization to longer contexts. We theoretically prove that this can represent some of the popular relative position encodings, such as T5's RPE, Alibi, and Kerple. We next empirically show that FIRE models have better generalization to longer contexts on both zero-shot language modeling and long text benchmarks.
Mamba: Linear-Time Sequence Modeling with Selective State Spaces
Foundation models, now powering most of the exciting applications in deep learning, are almost universally based on the Transformer architecture and its core attention module. Many subquadratic-time architectures such as linear attention, gated convolution and recurrent models, and structured state space models (SSMs) have been developed to address Transformers' computational inefficiency on long sequences, but they have not performed as well as attention on important modalities such as language. We identify that a key weakness of such models is their inability to perform content-based reasoning, and make several improvements. First, simply letting the SSM parameters be functions of the input addresses their weakness with discrete modalities, allowing the model to selectively propagate or forget information along the sequence length dimension depending on the current token. Second, even though this change prevents the use of efficient convolutions, we design a hardware-aware parallel algorithm in recurrent mode. We integrate these selective SSMs into a simplified end-to-end neural network architecture without attention or even MLP blocks (Mamba). Mamba enjoys fast inference (5times higher throughput than Transformers) and linear scaling in sequence length, and its performance improves on real data up to million-length sequences. As a general sequence model backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio, and genomics. On language modeling, our Mamba-3B model outperforms Transformers of the same size and matches Transformers twice its size, both in pretraining and downstream evaluation.
E^2VPT: An Effective and Efficient Approach for Visual Prompt Tuning
As the size of transformer-based models continues to grow, fine-tuning these large-scale pretrained vision models for new tasks has become increasingly parameter-intensive. Parameter-efficient learning has been developed to reduce the number of tunable parameters during fine-tuning. Although these methods show promising results, there is still a significant performance gap compared to full fine-tuning. To address this challenge, we propose an Effective and Efficient Visual Prompt Tuning (E^2VPT) approach for large-scale transformer-based model adaptation. Specifically, we introduce a set of learnable key-value prompts and visual prompts into self-attention and input layers, respectively, to improve the effectiveness of model fine-tuning. Moreover, we design a prompt pruning procedure to systematically prune low importance prompts while preserving model performance, which largely enhances the model's efficiency. Empirical results demonstrate that our approach outperforms several state-of-the-art baselines on two benchmarks, with considerably low parameter usage (e.g., 0.32% of model parameters on VTAB-1k). Our code is available at https://github.com/ChengHan111/E2VPT.
Are Transformers Effective for Time Series Forecasting?
Recently, there has been a surge of Transformer-based solutions for the long-term time series forecasting (LTSF) task. Despite the growing performance over the past few years, we question the validity of this line of research in this work. Specifically, Transformers is arguably the most successful solution to extract the semantic correlations among the elements in a long sequence. However, in time series modeling, we are to extract the temporal relations in an ordered set of continuous points. While employing positional encoding and using tokens to embed sub-series in Transformers facilitate preserving some ordering information, the nature of the permutation-invariant self-attention mechanism inevitably results in temporal information loss. To validate our claim, we introduce a set of embarrassingly simple one-layer linear models named LTSF-Linear for comparison. Experimental results on nine real-life datasets show that LTSF-Linear surprisingly outperforms existing sophisticated Transformer-based LTSF models in all cases, and often by a large margin. Moreover, we conduct comprehensive empirical studies to explore the impacts of various design elements of LTSF models on their temporal relation extraction capability. We hope this surprising finding opens up new research directions for the LTSF task. We also advocate revisiting the validity of Transformer-based solutions for other time series analysis tasks (e.g., anomaly detection) in the future. Code is available at: https://github.com/cure-lab/LTSF-Linear.
TokenFormer: Rethinking Transformer Scaling with Tokenized Model Parameters
Transformers have become the predominant architecture in foundation models due to their excellent performance across various domains. However, the substantial cost of scaling these models remains a significant concern. This problem arises primarily from their dependence on a fixed number of parameters within linear projections. When architectural modifications (e.g., channel dimensions) are introduced, the entire model typically requires retraining from scratch. As model sizes continue growing, this strategy results in increasingly high computational costs and becomes unsustainable. To overcome this problem, we introduce TokenFormer, a natively scalable architecture that leverages the attention mechanism not only for computations among input tokens but also for interactions between tokens and model parameters, thereby enhancing architectural flexibility. By treating model parameters as tokens, we replace all the linear projections in Transformers with our token-parameter attention layer, where input tokens act as queries and model parameters as keys and values. This reformulation allows for progressive and efficient scaling without necessitating retraining from scratch. Our model scales from 124M to 1.4B parameters by incrementally adding new key-value parameter pairs, achieving performance comparable to Transformers trained from scratch while greatly reducing training costs. Code and models are available at https://github.com/Haiyang-W/TokenFormer.
FMViT: A multiple-frequency mixing Vision Transformer
The transformer model has gained widespread adoption in computer vision tasks in recent times. However, due to the quadratic time and memory complexity of self-attention, which is proportional to the number of input tokens, most existing Vision Transformers (ViTs) encounter challenges in achieving efficient performance in practical industrial deployment scenarios, such as TensorRT and CoreML, where traditional CNNs excel. Although some recent attempts have been made to design CNN-Transformer hybrid architectures to tackle this problem, their overall performance has not met expectations. To tackle these challenges, we propose an efficient hybrid ViT architecture named FMViT. This approach enhances the model's expressive power by blending high-frequency features and low-frequency features with varying frequencies, enabling it to capture both local and global information effectively. Additionally, we introduce deploy-friendly mechanisms such as Convolutional Multigroup Reparameterization (gMLP), Lightweight Multi-head Self-Attention (RLMHSA), and Convolutional Fusion Block (CFB) to further improve the model's performance and reduce computational overhead. Our experiments demonstrate that FMViT surpasses existing CNNs, ViTs, and CNNTransformer hybrid architectures in terms of latency/accuracy trade-offs for various vision tasks. On the TensorRT platform, FMViT outperforms Resnet101 by 2.5% (83.3% vs. 80.8%) in top-1 accuracy on the ImageNet dataset while maintaining similar inference latency. Moreover, FMViT achieves comparable performance with EfficientNet-B5, but with a 43% improvement in inference speed. On CoreML, FMViT outperforms MobileOne by 2.6% in top-1 accuracy on the ImageNet dataset, with inference latency comparable to MobileOne (78.5% vs. 75.9%). Our code can be found at https://github.com/tany0699/FMViT.
Entropy-Based Block Pruning for Efficient Large Language Models
As large language models continue to scale, their growing computational and storage demands pose significant challenges for real-world deployment. In this work, we investigate redundancy within Transformer-based models and propose an entropy-based pruning strategy to enhance efficiency while maintaining performance. Empirical analysis reveals that the entropy of hidden representations decreases in the early blocks but progressively increases across most subsequent blocks. This trend suggests that entropy serves as a more effective measure of information richness within computation blocks. Unlike cosine similarity, which primarily captures geometric relationships, entropy directly quantifies uncertainty and information content, making it a more reliable criterion for pruning. Extensive experiments demonstrate that our entropy-based pruning approach surpasses cosine similarity-based methods in reducing model size while preserving accuracy, offering a promising direction for efficient model deployment.
Polynomial Composition Activations: Unleashing the Dynamics of Large Language Models
Transformers have found extensive applications across various domains due to the powerful fitting capabilities. This success can be partially attributed to their inherent nonlinearity. Thus, in addition to the ReLU function employed in the original transformer architecture, researchers have explored alternative modules such as GeLU and SwishGLU to enhance nonlinearity and thereby augment representational capacity. In this paper, we propose a novel category of polynomial composition activations (PolyCom), designed to optimize the dynamics of transformers. Theoretically, we provide a comprehensive mathematical analysis of PolyCom, highlighting its enhanced expressivity and efficacy relative to other activation functions. Notably, we demonstrate that networks incorporating PolyCom achieve the optimal approximation rate, indicating that PolyCom networks require minimal parameters to approximate general smooth functions in Sobolev spaces. We conduct empirical experiments on the pre-training configurations of large language models (LLMs), including both dense and sparse architectures. By substituting conventional activation functions with PolyCom, we enable LLMs to capture higher-order interactions within the data, thus improving performance metrics in terms of accuracy and convergence rates. Extensive experimental results demonstrate the effectiveness of our method, showing substantial improvements over other activation functions. Code is available at https://github.com/BryceZhuo/PolyCom.
Efficiency 360: Efficient Vision Transformers
Transformers are widely used for solving tasks in natural language processing, computer vision, speech, and music domains. In this paper, we talk about the efficiency of transformers in terms of memory (the number of parameters), computation cost (number of floating points operations), and performance of models, including accuracy, the robustness of the model, and fair \& bias-free features. We mainly discuss the vision transformer for the image classification task. Our contribution is to introduce an efficient 360 framework, which includes various aspects of the vision transformer, to make it more efficient for industrial applications. By considering those applications, we categorize them into multiple dimensions such as privacy, robustness, transparency, fairness, inclusiveness, continual learning, probabilistic models, approximation, computational complexity, and spectral complexity. We compare various vision transformer models based on their performance, the number of parameters, and the number of floating point operations (FLOPs) on multiple datasets.
Exploring Transformer Extrapolation
Length extrapolation has attracted considerable attention recently since it allows transformers to be tested on longer sequences than those used in training. Previous research has shown that this property can be attained by using carefully designed Relative Positional Encodings (RPEs). While these methods perform well on a variety of corpora, the conditions for length extrapolation have yet to be investigated. This paper attempts to determine what types of RPEs allow for length extrapolation through a thorough mathematical and empirical analysis. We discover that a transformer is certain to possess this property as long as the series that corresponds to the RPE's exponential converges. Two practices are derived from the conditions and examined in language modeling tasks on a variety of corpora. As a bonus from the conditions, we derive a new Theoretical Receptive Field (TRF) to measure the receptive field of RPEs without taking any training steps. Extensive experiments are conducted on the Wikitext-103, Books, Github, and WikiBook datasets to demonstrate the viability of our discovered conditions. We also compare TRF to Empirical Receptive Field (ERF) across different models, showing consistently matched trends on the aforementioned datasets. The code is available at https://github.com/OpenNLPLab/Rpe.
ByteTransformer: A High-Performance Transformer Boosted for Variable-Length Inputs
Transformers have become keystone models in natural language processing over the past decade. They have achieved great popularity in deep learning applications, but the increasing sizes of the parameter spaces required by transformer models generate a commensurate need to accelerate performance. Natural language processing problems are also routinely faced with variable-length sequences, as word counts commonly vary among sentences. Existing deep learning frameworks pad variable-length sequences to a maximal length, which adds significant memory and computational overhead. In this paper, we present ByteTransformer, a high-performance transformer boosted for variable-length inputs. We propose a padding-free algorithm that liberates the entire transformer from redundant computations on zero padded tokens. In addition to algorithmic-level optimization, we provide architecture-aware optimizations for transformer functional modules, especially the performance-critical algorithm Multi-Head Attention (MHA). Experimental results on an NVIDIA A100 GPU with variable-length sequence inputs validate that our fused MHA outperforms PyTorch by 6.13x. The end-to-end performance of ByteTransformer for a forward BERT transformer surpasses state-of-the-art transformer frameworks, such as PyTorch JIT, TensorFlow XLA, Tencent TurboTransformer, Microsoft DeepSpeed-Inference and NVIDIA FasterTransformer, by 87\%, 131\%, 138\%, 74\% and 55\%, respectively. We also demonstrate the general applicability of our optimization methods to other BERT-like models, including ALBERT, DistilBERT, and DeBERTa.
Universal Approximation Theorem for a Single-Layer Transformer
Deep learning employs multi-layer neural networks trained via the backpropagation algorithm. This approach has achieved success across many domains and relies on adaptive gradient methods such as the Adam optimizer. Sequence modeling evolved from recurrent neural networks to attention-based models, culminating in the Transformer architecture. Transformers have achieved state-of-the-art performance in natural language processing (for example, BERT and GPT-3) and have been applied in computer vision and computational biology. However, theoretical understanding of these models remains limited. In this paper, we examine the mathematical foundations of deep learning and Transformers and present a novel theoretical result. We review key concepts from linear algebra, probability, and optimization that underpin deep learning, and we analyze the multi-head self-attention mechanism and the backpropagation algorithm in detail. Our main contribution is a universal approximation theorem for Transformers: we prove that a single-layer Transformer, comprising one self-attention layer followed by a position-wise feed-forward network with ReLU activation, can approximate any continuous sequence-to-sequence mapping on a compact domain to arbitrary precision. We provide a formal statement and a complete proof. Finally, we present case studies that demonstrate the practical implications of this result. Our findings advance the theoretical understanding of Transformer models and help bridge the gap between theory and practice.
Combiner: Full Attention Transformer with Sparse Computation Cost
Transformers provide a class of expressive architectures that are extremely effective for sequence modeling. However, the key limitation of transformers is their quadratic memory and time complexity O(L^2) with respect to the sequence length in attention layers, which restricts application in extremely long sequences. Most existing approaches leverage sparsity or low-rank assumptions in the attention matrix to reduce cost, but sacrifice expressiveness. Instead, we propose Combiner, which provides full attention capability in each attention head while maintaining low computation and memory complexity. The key idea is to treat the self-attention mechanism as a conditional expectation over embeddings at each location, and approximate the conditional distribution with a structured factorization. Each location can attend to all other locations, either via direct attention, or through indirect attention to abstractions, which are again conditional expectations of embeddings from corresponding local regions. We show that most sparse attention patterns used in existing sparse transformers are able to inspire the design of such factorization for full attention, resulting in the same sub-quadratic cost (O(Llog(L)) or O(LL)). Combiner is a drop-in replacement for attention layers in existing transformers and can be easily implemented in common frameworks. An experimental evaluation on both autoregressive and bidirectional sequence tasks demonstrates the effectiveness of this approach, yielding state-of-the-art results on several image and text modeling tasks.
Approximation and Estimation Ability of Transformers for Sequence-to-Sequence Functions with Infinite Dimensional Input
Despite the great success of Transformer networks in various applications such as natural language processing and computer vision, their theoretical aspects are not well understood. In this paper, we study the approximation and estimation ability of Transformers as sequence-to-sequence functions with infinite dimensional inputs. Although inputs and outputs are both infinite dimensional, we show that when the target function has anisotropic smoothness, Transformers can avoid the curse of dimensionality due to their feature extraction ability and parameter sharing property. In addition, we show that even if the smoothness changes depending on each input, Transformers can estimate the importance of features for each input and extract important features dynamically. Then, we proved that Transformers achieve similar convergence rate as in the case of the fixed smoothness. Our theoretical results support the practical success of Transformers for high dimensional data.
Mixture of A Million Experts
The feedforward (FFW) layers in standard transformer architectures incur a linear increase in computational costs and activation memory as the hidden layer width grows. Sparse mixture-of-experts (MoE) architectures have emerged as a viable approach to address this issue by decoupling model size from computational cost. The recent discovery of the fine-grained MoE scaling law shows that higher granularity leads to better performance. However, existing MoE models are limited to a small number of experts due to computational and optimization challenges. This paper introduces PEER (parameter efficient expert retrieval), a novel layer design that utilizes the product key technique for sparse retrieval from a vast pool of tiny experts (over a million). Experiments on language modeling tasks demonstrate that PEER layers outperform dense FFWs and coarse-grained MoEs in terms of performance-compute trade-off. By enabling efficient utilization of a massive number of experts, PEER unlocks the potential for further scaling of transformer models while maintaining computational efficiency.
Attention Learning is Needed to Efficiently Learn Parity Function
Transformers, with their attention mechanisms, have emerged as the state-of-the-art architectures of sequential modeling and empirically outperform feed-forward neural networks (FFNNs) across many fields, such as natural language processing and computer vision. However, their generalization ability, particularly for low-sensitivity functions, remains less studied. We bridge this gap by analyzing transformers on the k-parity problem. Daniely and Malach (NeurIPS 2020) show that FFNNs with one hidden layer and O(nk^7 log k) parameters can learn k-parity, where the input length n is typically much larger than k. In this paper, we prove that FFNNs require at least Omega(n) parameters to learn k-parity, while transformers require only O(k) parameters, surpassing the theoretical lower bound needed by FFNNs. We further prove that this parameter efficiency cannot be achieved with fixed attention heads. Our work establishes transformers as theoretically superior to FFNNs in learning parity function, showing how their attention mechanisms enable parameter-efficient generalization in functions with low sensitivity.
Inference Optimization of Foundation Models on AI Accelerators
Powerful foundation models, including large language models (LLMs), with Transformer architectures have ushered in a new era of Generative AI across various industries. Industry and research community have witnessed a large number of new applications, based on those foundation models. Such applications include question and answer, customer services, image and video generation, and code completions, among others. However, as the number of model parameters reaches to hundreds of billions, their deployment incurs prohibitive inference costs and high latency in real-world scenarios. As a result, the demand for cost-effective and fast inference using AI accelerators is ever more higher. To this end, our tutorial offers a comprehensive discussion on complementary inference optimization techniques using AI accelerators. Beginning with an overview of basic Transformer architectures and deep learning system frameworks, we deep dive into system optimization techniques for fast and memory-efficient attention computations and discuss how they can be implemented efficiently on AI accelerators. Next, we describe architectural elements that are key for fast transformer inference. Finally, we examine various model compression and fast decoding strategies in the same context.
Diffusion-RWKV: Scaling RWKV-Like Architectures for Diffusion Models
Transformers have catalyzed advancements in computer vision and natural language processing (NLP) fields. However, substantial computational complexity poses limitations for their application in long-context tasks, such as high-resolution image generation. This paper introduces a series of architectures adapted from the RWKV model used in the NLP, with requisite modifications tailored for diffusion model applied to image generation tasks, referred to as Diffusion-RWKV. Similar to the diffusion with Transformers, our model is designed to efficiently handle patchnified inputs in a sequence with extra conditions, while also scaling up effectively, accommodating both large-scale parameters and extensive datasets. Its distinctive advantage manifests in its reduced spatial aggregation complexity, rendering it exceptionally adept at processing high-resolution images, thereby eliminating the necessity for windowing or group cached operations. Experimental results on both condition and unconditional image generation tasks demonstrate that Diffison-RWKV achieves performance on par with or surpasses existing CNN or Transformer-based diffusion models in FID and IS metrics while significantly reducing total computation FLOP usage.
Global Vision Transformer Pruning with Hessian-Aware Saliency
Transformers yield state-of-the-art results across many tasks. However, their heuristically designed architecture impose huge computational costs during inference. This work aims on challenging the common design philosophy of the Vision Transformer (ViT) model with uniform dimension across all the stacked blocks in a model stage, where we redistribute the parameters both across transformer blocks and between different structures within the block via the first systematic attempt on global structural pruning. Dealing with diverse ViT structural components, we derive a novel Hessian-based structural pruning criteria comparable across all layers and structures, with latency-aware regularization for direct latency reduction. Performing iterative pruning on the DeiT-Base model leads to a new architecture family called NViT (Novel ViT), with a novel parameter redistribution that utilizes parameters more efficiently. On ImageNet-1K, NViT-Base achieves a 2.6x FLOPs reduction, 5.1x parameter reduction, and 1.9x run-time speedup over the DeiT-Base model in a near lossless manner. Smaller NViT variants achieve more than 1% accuracy gain at the same throughput of the DeiT Small/Tiny variants, as well as a lossless 3.3x parameter reduction over the SWIN-Small model. These results outperform prior art by a large margin. Further analysis is provided on the parameter redistribution insight of NViT, where we show the high prunability of ViT models, distinct sensitivity within ViT block, and unique parameter distribution trend across stacked ViT blocks. Our insights provide viability for a simple yet effective parameter redistribution rule towards more efficient ViTs for off-the-shelf performance boost.
DSFormer: Effective Compression of Text-Transformers by Dense-Sparse Weight Factorization
With the tremendous success of large transformer models in natural language understanding, down-sizing them for cost-effective deployments has become critical. Recent studies have explored the low-rank weight factorization techniques which are efficient to train, and apply out-of-the-box to any transformer architecture. Unfortunately, the low-rank assumption tends to be over-restrictive and hinders the expressiveness of the compressed model. This paper proposes, DSFormer, a simple alternative factorization scheme which expresses a target weight matrix as the product of a small dense and a semi-structured sparse matrix. The resulting approximation is more faithful to the weight distribution in transformers and therefore achieves a stronger efficiency-accuracy trade-off. Another concern with existing factorizers is their dependence on a task-unaware initialization step which degrades the accuracy of the resulting model. DSFormer addresses this issue through a novel Straight-Through Factorizer (STF) algorithm that jointly learns all the weight factorizations to directly maximize the final task accuracy. Extensive experiments on multiple natural language understanding benchmarks demonstrate that DSFormer obtains up to 40% better compression than the state-of-the-art low-rank factorizers, leading semi-structured sparsity baselines and popular knowledge distillation approaches. Our approach is also orthogonal to mainstream compressors and offers up to 50% additional compression when added to popular distilled, layer-shared and quantized transformers. We empirically evaluate the benefits of STF over conventional optimization practices.
BiPFT: Binary Pre-trained Foundation Transformer with Low-rank Estimation of Binarization Residual Polynomials
Pretrained foundation models offer substantial benefits for a wide range of downstream tasks, which can be one of the most potential techniques to access artificial general intelligence. However, scaling up foundation transformers for maximal task-agnostic knowledge has brought about computational challenges, especially on resource-limited devices such as mobiles. This work proposes the first Binary Pretrained Foundation Transformer (BiPFT) for natural language understanding (NLU) tasks, which remarkably saves 56 times operations and 28 times memory. In contrast to previous task-specific binary transformers, BiPFT exhibits a substantial enhancement in the learning capabilities of binary neural networks (BNNs), promoting BNNs into the era of pre-training. Benefiting from extensive pretraining data, we further propose a data-driven binarization method. Specifically, we first analyze the binarization error in self-attention operations and derive the polynomials of binarization error. To simulate full-precision self-attention, we define binarization error as binarization residual polynomials, and then introduce low-rank estimators to model these polynomials. Extensive experiments validate the effectiveness of BiPFTs, surpassing task-specific baseline by 15.4% average performance on the GLUE benchmark. BiPFT also demonstrates improved robustness to hyperparameter changes, improved optimization efficiency, and reduced reliance on downstream distillation, which consequently generalize on various NLU tasks and simplify the downstream pipeline of BNNs. Our code and pretrained models are publicly available at https://github.com/Xingrun-Xing/BiPFT.
Speed Always Wins: A Survey on Efficient Architectures for Large Language Models
Large Language Models (LLMs) have delivered impressive results in language understanding, generation, reasoning, and pushes the ability boundary of multimodal models. Transformer models, as the foundation of modern LLMs, offer a strong baseline with excellent scaling properties. However, the traditional transformer architecture requires substantial computations and poses significant obstacles for large-scale training and practical deployment. In this survey, we offer a systematic examination of innovative LLM architectures that address the inherent limitations of transformers and boost the efficiency. Starting from language modeling, this survey covers the background and technical details of linear and sparse sequence modeling methods, efficient full attention variants, sparse mixture-of-experts, hybrid model architectures incorporating the above techniques, and emerging diffusion LLMs. Additionally, we discuss applications of these techniques to other modalities and consider their wider implications for developing scalable, resource-aware foundation models. By grouping recent studies into the above category, this survey presents a blueprint of modern efficient LLM architectures, and we hope this could help motivate future research toward more efficient, versatile AI systems.
PYRA: Parallel Yielding Re-Activation for Training-Inference Efficient Task Adaptation
Recently, the scale of transformers has grown rapidly, which introduces considerable challenges in terms of training overhead and inference efficiency in the scope of task adaptation. Existing works, namely Parameter-Efficient Fine-Tuning (PEFT) and model compression, have separately investigated the challenges. However, PEFT cannot guarantee the inference efficiency of the original backbone, especially for large-scale models. Model compression requires significant training costs for structure searching and re-training. Consequently, a simple combination of them cannot guarantee accomplishing both training efficiency and inference efficiency with minimal costs. In this paper, we propose a novel Parallel Yielding Re-Activation (PYRA) method for such a challenge of training-inference efficient task adaptation. PYRA first utilizes parallel yielding adaptive weights to comprehensively perceive the data distribution in downstream tasks. A re-activation strategy for token modulation is then applied for tokens to be merged, leading to calibrated token features. Extensive experiments demonstrate that PYRA outperforms all competing methods under both low compression rate and high compression rate, demonstrating its effectiveness and superiority in maintaining both training efficiency and inference efficiency for large-scale foundation models. Our code will be released to the public.
MVP: Meta Visual Prompt Tuning for Few-Shot Remote Sensing Image Scene Classification
Vision Transformer (ViT) models have recently emerged as powerful and versatile models for various visual tasks. Recently, a work called PMF has achieved promising results in few-shot image classification by utilizing pre-trained vision transformer models. However, PMF employs full fine-tuning for learning the downstream tasks, leading to significant overfitting and storage issues, especially in the remote sensing domain. In order to tackle these issues, we turn to the recently proposed parameter-efficient tuning methods, such as VPT, which updates only the newly added prompt parameters while keeping the pre-trained backbone frozen. Inspired by VPT, we propose the Meta Visual Prompt Tuning (MVP) method. Specifically, we integrate the VPT method into the meta-learning framework and tailor it to the remote sensing domain, resulting in an efficient framework for Few-Shot Remote Sensing Scene Classification (FS-RSSC). Furthermore, we introduce a novel data augmentation strategy based on patch embedding recombination to enhance the representation and diversity of scenes for classification purposes. Experiment results on the FS-RSSC benchmark demonstrate the superior performance of the proposed MVP over existing methods in various settings, such as various-way-various-shot, various-way-one-shot, and cross-domain adaptation.
A Survey on Transformer Compression
Large models based on the Transformer architecture play increasingly vital roles in artificial intelligence, particularly within the realms of natural language processing (NLP) and computer vision (CV). Model compression methods reduce their memory and computational cost, which is a necessary step to implement the transformer models on practical devices. Given the unique architecture of transformer, featuring alternative attention and Feedforward Neural Network (FFN) modules, specific compression techniques are required. The efficiency of these compression methods is also paramount, as it is usually impractical to retrain large models on the entire training dataset.This survey provides a comprehensive review of recent compression methods, with a specific focus on their application to transformer models. The compression methods are primarily categorized into pruning, quantization, knowledge distillation, and efficient architecture design. In each category, we discuss compression methods for both CV and NLP tasks, highlighting common underlying principles. At last, we delve into the relation between various compression methods, and discuss the further directions in this domain.
MatFormer: Nested Transformer for Elastic Inference
Transformer models are deployed in a wide range of settings, from multi-accelerator clusters to standalone mobile phones. The diverse inference constraints in these scenarios necessitate practitioners to train foundation models such as PaLM 2, Llama, & ViTs as a series of models of varying sizes. Due to significant training costs, only a select few model sizes are trained and supported, limiting more fine-grained control over relevant tradeoffs, including latency, cost, and accuracy. This work introduces MatFormer, a nested Transformer architecture designed to offer elasticity in a variety of deployment constraints. Each Feed Forward Network (FFN) block of a MatFormer model is jointly optimized with a few nested smaller FFN blocks. This training procedure allows for the Mix'n'Match of model granularities across layers -- i.e., a trained universal MatFormer model enables extraction of hundreds of accurate smaller models, which were never explicitly optimized. We empirically demonstrate MatFormer's effectiveness across different model classes (decoders & encoders), modalities (language & vision), and scales (up to 2.6B parameters). We find that a 2.6B decoder-only MatFormer language model (MatLM) allows us to extract smaller models spanning from 1.5B to 2.6B, each exhibiting comparable validation loss and one-shot downstream evaluations to their independently trained counterparts. Furthermore, we observe that smaller encoders extracted from a universal MatFormer-based ViT (MatViT) encoder preserve the metric-space structure for adaptive large-scale retrieval. Finally, we showcase that speculative decoding with the accurate and consistent submodels extracted from MatFormer can further reduce inference latency.
I3D: Transformer architectures with input-dependent dynamic depth for speech recognition
Transformer-based end-to-end speech recognition has achieved great success. However, the large footprint and computational overhead make it difficult to deploy these models in some real-world applications. Model compression techniques can reduce the model size and speed up inference, but the compressed model has a fixed architecture which might be suboptimal. We propose a novel Transformer encoder with Input-Dependent Dynamic Depth (I3D) to achieve strong performance-efficiency trade-offs. With a similar number of layers at inference time, I3D-based models outperform the vanilla Transformer and the static pruned model via iterative layer pruning. We also present interesting analysis on the gate probabilities and the input-dependency, which helps us better understand deep encoders.
xLSTMTime : Long-term Time Series Forecasting With xLSTM
In recent years, transformer-based models have gained prominence in multivariate long-term time series forecasting (LTSF), demonstrating significant advancements despite facing challenges such as high computational demands, difficulty in capturing temporal dynamics, and managing long-term dependencies. The emergence of LTSF-Linear, with its straightforward linear architecture, has notably outperformed transformer-based counterparts, prompting a reevaluation of the transformer's utility in time series forecasting. In response, this paper presents an adaptation of a recent architecture termed extended LSTM (xLSTM) for LTSF. xLSTM incorporates exponential gating and a revised memory structure with higher capacity that has good potential for LTSF. Our adopted architecture for LTSF termed as xLSTMTime surpasses current approaches. We compare xLSTMTime's performance against various state-of-the-art models across multiple real-world da-tasets, demonstrating superior forecasting capabilities. Our findings suggest that refined recurrent architectures can offer competitive alternatives to transformer-based models in LTSF tasks, po-tentially redefining the landscape of time series forecasting.
SAMformer: Unlocking the Potential of Transformers in Time Series Forecasting with Sharpness-Aware Minimization and Channel-Wise Attention
Transformer-based architectures achieved breakthrough performance in natural language processing and computer vision, yet they remain inferior to simpler linear baselines in multivariate long-term forecasting. To better understand this phenomenon, we start by studying a toy linear forecasting problem for which we show that transformers are incapable of converging to their true solution despite their high expressive power. We further identify the attention of transformers as being responsible for this low generalization capacity. Building upon this insight, we propose a shallow lightweight transformer model that successfully escapes bad local minima when optimized with sharpness-aware optimization. We empirically demonstrate that this result extends to all commonly used real-world multivariate time series datasets. In particular, SAMformer surpasses current state-of-the-art methods and is on par with the biggest foundation model MOIRAI while having significantly fewer parameters. The code is available at https://github.com/romilbert/samformer.
Breaking the Attention Bottleneck
Attention-based transformers have become the standard architecture in many deep learning fields, primarily due to their ability to model long-range dependencies and handle variable-length input sequences. However, the attention mechanism with its quadratic complexity is a significant bottleneck in the transformer architecture. This algorithm is only uni-directional in the decoder and converges to a static pattern in over-parametrized decoder-only models. I address this issue by developing a generative function as attention or activation replacement. It still has the auto-regressive character by comparing each token with the previous one. In my test setting with nanoGPT this yields a smaller loss while having a smaller model. The loss further drops by incorporating an average context vector. This concept of attention replacement is distributed under the GNU AGPL v3 license at https://gitlab.com/Bachstelze/causal_generation.
DOTA: Deformable Optimized Transformer Architecture for End-to-End Text Recognition with Retrieval-Augmented Generation
Text recognition in natural images remains a challenging yet essential task, with broad applications spanning computer vision and natural language processing. This paper introduces a novel end-to-end framework that combines ResNet and Vision Transformer backbones with advanced methodologies, including Deformable Convolutions, Retrieval-Augmented Generation, and Conditional Random Fields (CRF). These innovations collectively enhance feature representation and improve Optical Character Recognition (OCR) performance. Specifically, the framework substitutes standard convolution layers in the third and fourth blocks with Deformable Convolutions, leverages adaptive dropout for regularization, and incorporates CRF for more refined sequence modeling. Extensive experiments conducted on six benchmark datasets IC13, IC15, SVT, IIIT5K, SVTP, and CUTE80 validate the proposed method's efficacy, achieving notable accuracies: 97.32% on IC13, 58.26% on IC15, 88.10% on SVT, 74.13% on IIIT5K, 82.17% on SVTP, and 66.67% on CUTE80, resulting in an average accuracy of 77.77%. These results establish a new state-of-the-art for text recognition, demonstrating the robustness of the approach across diverse and challenging datasets.
Fast Feedforward Networks
We break the linear link between the layer size and its inference cost by introducing the fast feedforward (FFF) architecture, a log-time alternative to feedforward networks. We demonstrate that FFFs are up to 220x faster than feedforward networks, up to 6x faster than mixture-of-experts networks, and exhibit better training properties than mixtures of experts thanks to noiseless conditional execution. Pushing FFFs to the limit, we show that they can use as little as 1% of layer neurons for inference in vision transformers while preserving 94.2% of predictive performance.
Thinking Like Transformers
What is the computational model behind a Transformer? Where recurrent neural networks have direct parallels in finite state machines, allowing clear discussion and thought around architecture variants or trained models, Transformers have no such familiar parallel. In this paper we aim to change that, proposing a computational model for the transformer-encoder in the form of a programming language. We map the basic components of a transformer-encoder -- attention and feed-forward computation -- into simple primitives, around which we form a programming language: the Restricted Access Sequence Processing Language (RASP). We show how RASP can be used to program solutions to tasks that could conceivably be learned by a Transformer, and how a Transformer can be trained to mimic a RASP solution. In particular, we provide RASP programs for histograms, sorting, and Dyck-languages. We further use our model to relate their difficulty in terms of the number of required layers and attention heads: analyzing a RASP program implies a maximum number of heads and layers necessary to encode a task in a transformer. Finally, we see how insights gained from our abstraction might be used to explain phenomena seen in recent works.
Fast Tree-Field Integrators: From Low Displacement Rank to Topological Transformers
We present a new class of fast polylog-linear algorithms based on the theory of structured matrices (in particular low displacement rank) for integrating tensor fields defined on weighted trees. Several applications of the resulting fast tree-field integrators (FTFIs) are presented, including (a) approximation of graph metrics with tree metrics, (b) graph classification, (c) modeling on meshes, and finally (d) Topological Transformers (TTs) (Choromanski et al., 2022) for images. For Topological Transformers, we propose new relative position encoding (RPE) masking mechanisms with as few as three extra learnable parameters per Transformer layer, leading to 1.0-1.5%+ accuracy gains. Importantly, most of FTFIs are exact methods, thus numerically equivalent to their brute-force counterparts. When applied to graphs with thousands of nodes, those exact algorithms provide 5.7-13x speedups. We also provide an extensive theoretical analysis of our methods.
PERFT: Parameter-Efficient Routed Fine-Tuning for Mixture-of-Expert Model
The Mixture-of-Experts (MoE) paradigm has emerged as a powerful approach for scaling transformers with improved resource utilization. However, efficiently fine-tuning MoE models remains largely underexplored. Inspired by recent works on Parameter-Efficient Fine-Tuning (PEFT), we present a unified framework for integrating PEFT modules directly into the MoE mechanism. Aligning with the core principles and architecture of MoE, our framework encompasses a set of design dimensions including various functional and composition strategies. By combining design choices within our framework, we introduce Parameter-Efficient Routed Fine-Tuning (PERFT) as a flexible and scalable family of PEFT strategies tailored for MoE models. Extensive experiments on adapting OLMoE-1B-7B and Mixtral-8times7B for commonsense and arithmetic reasoning tasks demonstrate the effectiveness, scalability, and intriguing dynamics of PERFT. Additionally, we provide empirical findings for each specific design choice to facilitate better application of MoE and PEFT.
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference
Large-scale pre-trained language models such as BERT have brought significant improvements to NLP applications. However, they are also notorious for being slow in inference, which makes them difficult to deploy in real-time applications. We propose a simple but effective method, DeeBERT, to accelerate BERT inference. Our approach allows samples to exit earlier without passing through the entire model. Experiments show that DeeBERT is able to save up to ~40% inference time with minimal degradation in model quality. Further analyses show different behaviors in the BERT transformer layers and also reveal their redundancy. Our work provides new ideas to efficiently apply deep transformer-based models to downstream tasks. Code is available at https://github.com/castorini/DeeBERT.
PREF: Phasorial Embedding Fields for Compact Neural Representations
We present an efficient frequency-based neural representation termed PREF: a shallow MLP augmented with a phasor volume that covers significant border spectra than previous Fourier feature mapping or Positional Encoding. At the core is our compact 3D phasor volume where frequencies distribute uniformly along a 2D plane and dilate along a 1D axis. To this end, we develop a tailored and efficient Fourier transform that combines both Fast Fourier transform and local interpolation to accelerate na\"ive Fourier mapping. We also introduce a Parsvel regularizer that stables frequency-based learning. In these ways, Our PREF reduces the costly MLP in the frequency-based representation, thereby significantly closing the efficiency gap between it and other hybrid representations, and improving its interpretability. Comprehensive experiments demonstrate that our PREF is able to capture high-frequency details while remaining compact and robust, including 2D image generalization, 3D signed distance function regression and 5D neural radiance field reconstruction.
Key-Value Transformer
Transformers have emerged as the prevailing standard solution for various AI tasks, including computer vision and natural language processing. The widely adopted Query, Key, and Value formulation (QKV) has played a significant role in this. Nevertheless, no research has examined the essentiality of these three components for transformer performance. Therefore, we conducted an evaluation of the key-value formulation (KV), which generates symmetric attention maps, along with an asymmetric version that incorporates a 2D positional encoding into the attention matrix. Remarkably, this transformer requires fewer parameters and computation than the original one. Through experiments encompassing three task types -- synthetics (such as reversing or sorting a list), vision (mnist or cifar classification), and NLP (character generation and translation) -- we discovered that the KV transformer occasionally outperforms the QKV transformer. However, it also exhibits instances of underperformance compared to QKV, making it challenging to draw a definitive conclusion. Nonetheless, we consider the reported results to be encouraging and anticipate that they may pave the way for more efficient transformers in the future.
Accelerating Transformer Pre-training with 2:4 Sparsity
Training large transformers is slow, but recent innovations on GPU architecture give us an advantage. NVIDIA Ampere GPUs can execute a fine-grained 2:4 sparse matrix multiplication twice as fast as its dense equivalent. In the light of this property, we comprehensively investigate the feasibility of accelerating feed-forward networks (FFNs) of transformers in pre-training. First, we define a ``flip rate'' to monitor the stability of a 2:4 training process. Utilizing this metric, we propose three techniques to preserve accuracy: to modify the sparse-refined straight-through estimator by applying the masked decay term on gradients, to determine a feasible decay factor in warm-up stage, and to enhance the model's quality by a dense fine-tuning procedure near the end of pre-training. Besides, we devise two techniques to practically accelerate training: to calculate transposable 2:4 masks by convolution, and to accelerate gated activation functions by reducing GPU L2 cache miss. Experiments show that our 2:4 sparse training algorithm achieves similar convergence to dense training algorithms on several transformer pre-training tasks, while actual acceleration can be observed on different shapes of transformer block apparently. Our toolkit is available at https://github.com/huyz2023/2by4-pretrain.
Scaling Up Probabilistic Circuits by Latent Variable Distillation
Probabilistic Circuits (PCs) are a unified framework for tractable probabilistic models that support efficient computation of various probabilistic queries (e.g., marginal probabilities). One key challenge is to scale PCs to model large and high-dimensional real-world datasets: we observe that as the number of parameters in PCs increases, their performance immediately plateaus. This phenomenon suggests that the existing optimizers fail to exploit the full expressive power of large PCs. We propose to overcome such bottleneck by latent variable distillation: we leverage the less tractable but more expressive deep generative models to provide extra supervision over the latent variables of PCs. Specifically, we extract information from Transformer-based generative models to assign values to latent variables of PCs, providing guidance to PC optimizers. Experiments on both image and language modeling benchmarks (e.g., ImageNet and WikiText-2) show that latent variable distillation substantially boosts the performance of large PCs compared to their counterparts without latent variable distillation. In particular, on the image modeling benchmarks, PCs achieve competitive performance against some of the widely-used deep generative models, including variational autoencoders and flow-based models, opening up new avenues for tractable generative modeling.
Eliciting Fine-Tuned Transformer Capabilities via Inference-Time Techniques
Large language models have transformed natural language processing, yet supervised fine-tuning (SFT) remains computationally intensive. This paper formally proves that capabilities acquired through SFT can be approximated by a base transformer model using inference-time techniques, specifically in-context learning (ICL), without altering model parameters, under idealized assumptions including unbounded computational resources and access to the fine-tuning dataset. We extend these results to practical scenarios with finite context lengths and partial dataset access. For text generation tasks with fixed output length l, datasets of size Oleft( m V{varepsilon^2} log m{delta} right) or, with bounded context, Oleft( l log V{varepsilon^2} log 1{delta} right) suffice to approximate fine-tuned behavior across m contexts within error varepsilon, where V is the vocabulary size and delta is the failure probability. For linear classification, datasets of size Oleft( d{varepsilon} right) or, with fixed context, Oleft( 1{varepsilon^2} log 1{delta} right) are sufficient, where d is the input dimension. Grounded in the Turing completeness of transformers, these results provide a theoretical foundation for resource-efficient deployment of large language models, with practical techniques like retrieval-augmented generation bridging theory to real-world applications.
Efficient pre-training objectives for Transformers
The Transformer architecture deeply changed the natural language processing, outperforming all previous state-of-the-art models. However, well-known Transformer models like BERT, RoBERTa, and GPT-2 require a huge compute budget to create a high quality contextualised representation. In this paper, we study several efficient pre-training objectives for Transformers-based models. By testing these objectives on different tasks, we determine which of the ELECTRA model's new features is the most relevant. We confirm that Transformers pre-training is improved when the input does not contain masked tokens and that the usage of the whole output to compute the loss reduces training time. Moreover, inspired by ELECTRA, we study a model composed of two blocks; a discriminator and a simple generator based on a statistical model with no impact on the computational performances. Besides, we prove that eliminating the MASK token and considering the whole output during the loss computation are essential choices to improve performance. Furthermore, we show that it is possible to efficiently train BERT-like models using a discriminative approach as in ELECTRA but without a complex generator, which is expensive. Finally, we show that ELECTRA benefits heavily from a state-of-the-art hyper-parameters search.
Protoformer: Embedding Prototypes for Transformers
Transformers have been widely applied in text classification. Unfortunately, real-world data contain anomalies and noisy labels that cause challenges for state-of-art Transformers. This paper proposes Protoformer, a novel self-learning framework for Transformers that can leverage problematic samples for text classification. Protoformer features a selection mechanism for embedding samples that allows us to efficiently extract and utilize anomalies prototypes and difficult class prototypes. We demonstrated such capabilities on datasets with diverse textual structures (e.g., Twitter, IMDB, ArXiv). We also applied the framework to several models. The results indicate that Protoformer can improve current Transformers in various empirical settings.
Fast DistilBERT on CPUs
Transformer-based language models have become the standard approach to solving natural language processing tasks. However, industry adoption usually requires the maximum throughput to comply with certain latency constraints that prevents Transformer models from being used in production. To address this gap, model compression techniques such as quantization and pruning may be used to improve inference efficiency. However, these compression techniques require specialized software to apply and deploy at scale. In this work, we propose a new pipeline for creating and running Fast Transformer models on CPUs, utilizing hardware-aware pruning, knowledge distillation, quantization, and our own Transformer inference runtime engine with optimized kernels for sparse and quantized operators. We demonstrate the efficiency of our pipeline by creating a Fast DistilBERT model showing minimal accuracy loss on the question-answering SQuADv1.1 benchmark, and throughput results under typical production constraints and environments. Our results outperform existing state-of-the-art Neural Magic's DeepSparse runtime performance by up to 50% and up to 4.1x performance speedup over ONNX Runtime. Source code is publicly available at https://github.com/intel/intel-extension-for-transformers.
Learned Thresholds Token Merging and Pruning for Vision Transformers
Vision transformers have demonstrated remarkable success in a wide range of computer vision tasks over the last years. However, their high computational costs remain a significant barrier to their practical deployment. In particular, the complexity of transformer models is quadratic with respect to the number of input tokens. Therefore techniques that reduce the number of input tokens that need to be processed have been proposed. This paper introduces Learned Thresholds token Merging and Pruning (LTMP), a novel approach that leverages the strengths of both token merging and token pruning. LTMP uses learned threshold masking modules that dynamically determine which tokens to merge and which to prune. We demonstrate our approach with extensive experiments on vision transformers on the ImageNet classification task. Our results demonstrate that LTMP achieves state-of-the-art accuracy across reduction rates while requiring only a single fine-tuning epoch, which is an order of magnitude faster than previous methods. Code is available at https://github.com/Mxbonn/ltmp .
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting
Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, including quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a ProbSparse self-attention mechanism, which achieves O(L log L) in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.
Neural Attention: A Novel Mechanism for Enhanced Expressive Power in Transformer Models
Transformer models typically calculate attention matrices using dot products, which have limitations when capturing nonlinear relationships between embedding vectors. We propose Neural Attention, a technique that replaces dot products with feed-forward networks, enabling a more expressive representation of relationships between tokens. This approach modifies only the attention matrix calculation while preserving the matrix dimensions, making it easily adaptable to existing transformer-based architectures. We provide a detailed mathematical justification for why Neural Attention increases representational capacity and conduct controlled experiments to validate this claim. When comparing Neural Attention and Dot-Product Attention, NLP experiments on WikiText-103 show a reduction in perplexity of over 5 percent. Similarly, experiments on CIFAR-10 and CIFAR-100 show comparable improvements for image classification tasks. While Neural Attention introduces higher computational demands, we develop techniques to mitigate these challenges, ensuring practical usability without sacrificing the increased expressivity it provides. This work establishes Neural Attention as an effective means of enhancing the predictive capabilities of transformer models across a variety of applications.
Nonparametric Variational Regularisation of Pretrained Transformers
The current paradigm of large-scale pre-training and fine-tuning Transformer large language models has lead to significant improvements across the board in natural language processing. However, such large models are susceptible to overfitting to their training data, and as a result the models perform poorly when the domain changes. Also, due to the model's scale, the cost of fine-tuning the model to the new domain is large. Nonparametric Variational Information Bottleneck (NVIB) has been proposed as a regulariser for training cross-attention in Transformers, potentially addressing the overfitting problem. We extend the NVIB framework to replace all types of attention functions in Transformers, and show that existing pretrained Transformers can be reinterpreted as Nonparametric Variational (NV) models using a proposed identity initialisation. We then show that changing the initialisation introduces a novel, information-theoretic post-training regularisation in the attention mechanism, which improves out-of-domain generalisation without any training. This success supports the hypothesis that pretrained Transformers are implicitly NV Bayesian models.
AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks
Transformer-based pre-trained models with millions of parameters require large storage. Recent approaches tackle this shortcoming by training adapters, but these approaches still require a relatively large number of parameters. In this study, AdapterBias, a surprisingly simple yet effective adapter architecture, is proposed. AdapterBias adds a token-dependent shift to the hidden output of transformer layers to adapt to downstream tasks with only a vector and a linear layer. Extensive experiments are conducted to demonstrate the effectiveness of AdapterBias. The experiments show that our proposed method can dramatically reduce the trainable parameters compared to the previous works with a minimal decrease in task performances compared with fine-tuned pre-trained models. We further find that AdapterBias automatically learns to assign more significant representation shifts to the tokens related to the task in consideration.
Advancing Plain Vision Transformer Towards Remote Sensing Foundation Model
Large-scale vision foundation models have made significant progress in visual tasks on natural images, with vision transformers being the primary choice due to their good scalability and representation ability. However, large-scale models in remote sensing (RS) have not yet been sufficiently explored. In this paper, we resort to plain vision transformers with about 100 million parameters and make the first attempt to propose large vision models tailored to RS tasks and investigate how such large models perform. To handle the large sizes and objects of arbitrary orientations in RS images, we propose a new rotated varied-size window attention to replace the original full attention in transformers, which can significantly reduce the computational cost and memory footprint while learning better object representation by extracting rich context from the generated diverse windows. Experiments on detection tasks show the superiority of our model over all state-of-the-art models, achieving 81.24% mAP on the DOTA-V1.0 dataset. The results of our models on downstream classification and segmentation tasks also show competitive performance compared to existing advanced methods. Further experiments show the advantages of our models in terms of computational complexity and data efficiency in transferring.
PPT: Token Pruning and Pooling for Efficient Vision Transformers
Vision Transformers (ViTs) have emerged as powerful models in the field of computer vision, delivering superior performance across various vision tasks. However, the high computational complexity poses a significant barrier to their practical applications in real-world scenarios. Motivated by the fact that not all tokens contribute equally to the final predictions and fewer tokens bring less computational cost, reducing redundant tokens has become a prevailing paradigm for accelerating vision transformers. However, we argue that it is not optimal to either only reduce inattentive redundancy by token pruning, or only reduce duplicative redundancy by token merging. To this end, in this paper we propose a novel acceleration framework, namely token Pruning & Pooling Transformers (PPT), to adaptively tackle these two types of redundancy in different layers. By heuristically integrating both token pruning and token pooling techniques in ViTs without additional trainable parameters, PPT effectively reduces the model complexity while maintaining its predictive accuracy. For example, PPT reduces over 37% FLOPs and improves the throughput by over 45% for DeiT-S without any accuracy drop on the ImageNet dataset. The code is available at https://github.com/xjwu1024/PPT and https://github.com/mindspore-lab/models/
Token Transforming: A Unified and Training-Free Token Compression Framework for Vision Transformer Acceleration
Vision transformers have been widely explored in various vision tasks. Due to heavy computational cost, much interest has aroused for compressing vision transformer dynamically in the aspect of tokens. Current methods mainly pay attention to token pruning or merging to reduce token numbers, in which tokens are compressed exclusively, causing great information loss and therefore post-training is inevitably required to recover the performance. In this paper, we rethink token reduction and unify the process as an explicit form of token matrix transformation, in which all existing methods are constructing special forms of matrices within the framework. Furthermore, we propose a many-to-many Token Transforming framework that serves as a generalization of all existing methods and reserves the most information, even enabling training-free acceleration. We conduct extensive experiments to validate our framework. Specifically, we reduce 40% FLOPs and accelerate DeiT-S by times1.5 with marginal 0.1% accuracy drop. Furthermore, we extend the method to dense prediction tasks including segmentation, object detection, depth estimation, and language model generation. Results demonstrate that the proposed method consistently achieves substantial improvements, offering a better computation-performance trade-off, impressive budget reduction and inference acceleration.
Pluggable Pruning with Contiguous Layer Distillation for Diffusion Transformers
Diffusion Transformers (DiTs) have shown exceptional performance in image generation, yet their large parameter counts incur high computational costs, impeding deployment in resource-constrained settings. To address this, we propose Pluggable Pruning with Contiguous Layer Distillation (PPCL), a flexible structured pruning framework specifically designed for DiT architectures. First, we identify redundant layer intervals through a linear probing mechanism combined with the first-order differential trend analysis of similarity metrics. Subsequently, we propose a plug-and-play teacher-student alternating distillation scheme tailored to integrate depth-wise and width-wise pruning within a single training phase. This distillation framework enables flexible knowledge transfer across diverse pruning ratios, eliminating the need for per-configuration retraining. Extensive experiments on multiple Multi-Modal Diffusion Transformer architecture models demonstrate that PPCL achieves a 50\% reduction in parameter count compared to the full model, with less than 3\% degradation in key objective metrics. Notably, our method maintains high-quality image generation capabilities while achieving higher compression ratios, rendering it well-suited for resource-constrained environments. The open-source code, checkpoints for PPCL can be found at the following link: https://github.com/OPPO-Mente-Lab/Qwen-Image-Pruning.
iTransformer: Inverted Transformers Are Effective for Time Series Forecasting
The recent boom of linear forecasting models questions the ongoing passion for architectural modifications of Transformer-based forecasters. These forecasters leverage Transformers to model the global dependencies over temporal tokens of time series, with each token formed by multiple variates of the same timestamp. However, Transformers are challenged in forecasting series with larger lookback windows due to performance degradation and computation explosion. Besides, the embedding for each temporal token fuses multiple variates that represent potential delayed events and distinct physical measurements, which may fail in learning variate-centric representations and result in meaningless attention maps. In this work, we reflect on the competent duties of Transformer components and repurpose the Transformer architecture without any modification to the basic components. We propose iTransformer that simply applies the attention and feed-forward network on the inverted dimensions. Specifically, the time points of individual series are embedded into variate tokens which are utilized by the attention mechanism to capture multivariate correlations; meanwhile, the feed-forward network is applied for each variate token to learn nonlinear representations. The iTransformer model achieves state-of-the-art on challenging real-world datasets, which further empowers the Transformer family with promoted performance, generalization ability across different variates, and better utilization of arbitrary lookback windows, making it a nice alternative as the fundamental backbone of time series forecasting. Code is available at this repository: https://github.com/thuml/iTransformer.
RepQuant: Towards Accurate Post-Training Quantization of Large Transformer Models via Scale Reparameterization
Large transformer models have demonstrated remarkable success. Post-training quantization (PTQ), which requires only a small dataset for calibration and avoids end-to-end retraining, is a promising solution for compressing these large models. Regrettably, existing PTQ methods typically exhibit non-trivial performance loss. We find that the performance bottleneck stems from over-consideration of hardware compatibility in the quantization process, compelling them to reluctantly employ simple quantizers, albeit at the expense of accuracy. With the above insights, we propose RepQuant, a novel PTQ framework with quantization-inference decoupling paradigm to address the above issues. RepQuant employs complex quantizers in the quantization process and simplified quantizers in the inference process, and performs mathematically equivalent transformations between the two through quantization scale reparameterization, thus ensuring both accurate quantization and efficient inference. More specifically, we focus on two components with extreme distributions: LayerNorm activations and Softmax activations. Initially, we apply channel-wise quantization and log2 quantization, respectively, which are tailored to their distributions. In particular, for the former, we introduce a learnable per-channel dual clipping scheme, which is designed to efficiently identify outliers in the unbalanced activations with fine granularity. Then, we reparameterize the scales to hardware-friendly layer-wise quantization and log2 quantization for inference. Moreover, quantized weight reconstruction is seamlessly integrated into the above procedure to further push the performance limits. Extensive experiments are performed on different large-scale transformer variants on multiple tasks, including vision, language, and multi-modal transformers, and RepQuant encouragingly demonstrates significant performance advantages.
Multi Resolution Analysis (MRA) for Approximate Self-Attention
Transformers have emerged as a preferred model for many tasks in natural langugage processing and vision. Recent efforts on training and deploying Transformers more efficiently have identified many strategies to approximate the self-attention matrix, a key module in a Transformer architecture. Effective ideas include various prespecified sparsity patterns, low-rank basis expansions and combinations thereof. In this paper, we revisit classical Multiresolution Analysis (MRA) concepts such as Wavelets, whose potential value in this setting remains underexplored thus far. We show that simple approximations based on empirical feedback and design choices informed by modern hardware and implementation challenges, eventually yield a MRA-based approach for self-attention with an excellent performance profile across most criteria of interest. We undertake an extensive set of experiments and demonstrate that this multi-resolution scheme outperforms most efficient self-attention proposals and is favorable for both short and long sequences. Code is available at https://github.com/mlpen/mra-attention.
Pseudo Relevance Feedback is Enough to Close the Gap Between Small and Large Dense Retrieval Models
Scaling dense retrievers to larger large language model (LLM) backbones has been a dominant strategy for improving their retrieval effectiveness. However, this has substantial cost implications: larger backbones require more expensive hardware (e.g. GPUs with more memory) and lead to higher indexing and querying costs (latency, energy consumption). In this paper, we challenge this paradigm by introducing PromptPRF, a feature-based pseudo-relevance feedback (PRF) framework that enables small LLM-based dense retrievers to achieve effectiveness comparable to much larger models. PromptPRF uses LLMs to extract query-independent, structured and unstructured features (e.g., entities, summaries, chain-of-thought keywords, essay) from top-ranked documents. These features are generated offline and integrated into dense query representations via prompting, enabling efficient retrieval without additional training. Unlike prior methods such as GRF, which rely on online, query-specific generation and sparse retrieval, PromptPRF decouples feedback generation from query processing and supports dense retrievers in a fully zero-shot setting. Experiments on TREC DL and BEIR benchmarks demonstrate that PromptPRF consistently improves retrieval effectiveness and offers favourable cost-effectiveness trade-offs. We further present ablation studies to understand the role of positional feedback and analyse the interplay between feature extractor size, PRF depth, and model performance. Our findings demonstrate that with effective PRF design, scaling the retriever is not always necessary, narrowing the gap between small and large models while reducing inference cost.
PADRe: A Unifying Polynomial Attention Drop-in Replacement for Efficient Vision Transformer
We present Polynomial Attention Drop-in Replacement (PADRe), a novel and unifying framework designed to replace the conventional self-attention mechanism in transformer models. Notably, several recent alternative attention mechanisms, including Hyena, Mamba, SimA, Conv2Former, and Castling-ViT, can be viewed as specific instances of our PADRe framework. PADRe leverages polynomial functions and draws upon established results from approximation theory, enhancing computational efficiency without compromising accuracy. PADRe's key components include multiplicative nonlinearities, which we implement using straightforward, hardware-friendly operations such as Hadamard products, incurring only linear computational and memory costs. PADRe further avoids the need for using complex functions such as Softmax, yet it maintains comparable or superior accuracy compared to traditional self-attention. We assess the effectiveness of PADRe as a drop-in replacement for self-attention across diverse computer vision tasks. These tasks include image classification, image-based 2D object detection, and 3D point cloud object detection. Empirical results demonstrate that PADRe runs significantly faster than the conventional self-attention (11x ~ 43x faster on server GPU and mobile NPU) while maintaining similar accuracy when substituting self-attention in the transformer models.
IceFormer: Accelerated Inference with Long-Sequence Transformers on CPUs
One limitation of existing Transformer-based models is that they cannot handle very long sequences as input since their self-attention operations exhibit quadratic time and space complexity. This problem becomes especially acute when Transformers are deployed on hardware platforms equipped only with CPUs. To address this issue, we propose a novel method for accelerating self-attention at inference time that works with pretrained Transformer models out-of-the-box without requiring retraining. We experiment using our method to accelerate various long-sequence Transformers, including a leading LLaMA 2-based LLM, on various benchmarks and demonstrate a greater speedup of 2.73x - 7.63x while retaining 98.6% - 99.6% of the accuracy of the original pretrained models. The code is available on our project website at https://yuzhenmao.github.io/IceFormer/.
LLM-FP4: 4-Bit Floating-Point Quantized Transformers
We propose LLM-FP4 for quantizing both weights and activations in large language models (LLMs) down to 4-bit floating-point values, in a post-training manner. Existing post-training quantization (PTQ) solutions are primarily integer-based and struggle with bit widths below 8 bits. Compared to integer quantization, floating-point (FP) quantization is more flexible and can better handle long-tail or bell-shaped distributions, and it has emerged as a default choice in many hardware platforms. One characteristic of FP quantization is that its performance largely depends on the choice of exponent bits and clipping range. In this regard, we construct a strong FP-PTQ baseline by searching for the optimal quantization parameters. Furthermore, we observe a high inter-channel variance and low intra-channel variance pattern in activation distributions, which adds activation quantization difficulty. We recognize this pattern to be consistent across a spectrum of transformer models designed for diverse tasks, such as LLMs, BERT, and Vision Transformer models. To tackle this, we propose per-channel activation quantization and show that these additional scaling factors can be reparameterized as exponential biases of weights, incurring a negligible cost. Our method, for the first time, can quantize both weights and activations in the LLaMA-13B to only 4-bit and achieves an average score of 63.1 on the common sense zero-shot reasoning tasks, which is only 5.8 lower than the full-precision model, significantly outperforming the previous state-of-the-art by 12.7 points. Code is available at: https://github.com/nbasyl/LLM-FP4.
Understanding Addition in Transformers
Understanding the inner workings of machine learning models like Transformers is vital for their safe and ethical use. This paper provides a comprehensive analysis of a one-layer Transformer model trained to perform n-digit integer addition. Our findings suggest that the model dissects the task into parallel streams dedicated to individual digits, employing varied algorithms tailored to different positions within the digits. Furthermore, we identify a rare scenario characterized by high loss, which we explain. By thoroughly elucidating the model's algorithm, we provide new insights into its functioning. These findings are validated through rigorous testing and mathematical modeling, thereby contributing to the broader fields of model understanding and interpretability. Our approach opens the door for analyzing more complex tasks and multi-layer Transformer models.
A Multiscale Visualization of Attention in the Transformer Model
The Transformer is a sequence model that forgoes traditional recurrent architectures in favor of a fully attention-based approach. Besides improving performance, an advantage of using attention is that it can also help to interpret a model by showing how the model assigns weight to different input elements. However, the multi-layer, multi-head attention mechanism in the Transformer model can be difficult to decipher. To make the model more accessible, we introduce an open-source tool that visualizes attention at multiple scales, each of which provides a unique perspective on the attention mechanism. We demonstrate the tool on BERT and OpenAI GPT-2 and present three example use cases: detecting model bias, locating relevant attention heads, and linking neurons to model behavior.
Transformers Get Stable: An End-to-End Signal Propagation Theory for Language Models
In spite of their huge success, transformer models remain difficult to scale in depth. In this work, we develop a unified signal propagation theory and provide formulae that govern the moments of the forward and backward signal through the transformer model. Our framework can be used to understand and mitigate vanishing/exploding gradients, rank collapse, and instability associated with high attention scores. We also propose DeepScaleLM, an initialization and scaling scheme that conserves unit output/gradient moments throughout the model, enabling the training of very deep models with 100s of layers. We find that transformer models could be much deeper - our deep models with fewer parameters outperform shallow models in Language Modeling, Speech Translation, and Image Classification, across Encoder-only, Decoder-only and Encoder-Decoder variants, for both Pre-LN and Post-LN transformers, for multiple datasets and model sizes. These improvements also translate into improved performance on downstream Question Answering tasks and improved robustness for image classification.
Towards Next-Level Post-Training Quantization of Hyper-Scale Transformers
With the increasing complexity of generative AI models, post-training quantization (PTQ) has emerged as a promising solution for deploying hyper-scale models on edge devices such as mobile devices and TVs. Existing PTQ schemes, however, consume considerable time and resources, which could be a bottleneck in real situations where frequent model updates and multiple hyper-parameter tunings are required. As a cost-effective alternative, one-shot PTQ schemes have been proposed. Still, the performance is somewhat limited because they cannot consider the inter-layer dependency within the attention module, which is a very important feature of Transformers. In this paper, we thus propose a novel PTQ algorithm that balances accuracy and efficiency. The key idea of the proposed algorithm called aespa is to perform quantization layer-wise for efficiency while considering cross-layer dependency to preserve the attention score. Through extensive experiments on various language models and complexity analysis, we demonstrate that aespa is accurate and efficient in quantizing Transformer models.
HoPE: Hyperbolic Rotary Positional Encoding for Stable Long-Range Dependency Modeling in Large Language Models
Positional encoding mechanisms enable Transformers to model sequential structure and long-range dependencies in text. While absolute positional encodings struggle with extrapolation to longer sequences due to fixed positional representations, and relative approaches like Alibi exhibit performance degradation on extremely long contexts, the widely-used Rotary Positional Encoding (RoPE) introduces oscillatory attention patterns that hinder stable long-distance dependency modelling. We address these limitations through a geometric reformulation of positional encoding. Drawing inspiration from Lorentz transformations in hyperbolic geometry, we propose Hyperbolic Rotary Positional Encoding (HoPE), which leverages hyperbolic functions to implement Lorentz rotations on token representations. Theoretical analysis demonstrates that RoPE is a special case of our generalized formulation. HoPE fundamentally resolves RoPE's slation issues by enforcing monotonic decay of attention weights with increasing token distances. Extensive experimental results, including perplexity evaluations under several extended sequence benchmarks, show that HoPE consistently exceeds existing positional encoding methods. These findings underscore HoPE's enhanced capacity for representing and generalizing long-range dependencies. Data and code will be available.
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context
Transformers have a potential of learning longer-term dependency, but are limited by a fixed-length context in the setting of language modeling. We propose a novel neural architecture Transformer-XL that enables learning dependency beyond a fixed length without disrupting temporal coherence. It consists of a segment-level recurrence mechanism and a novel positional encoding scheme. Our method not only enables capturing longer-term dependency, but also resolves the context fragmentation problem. As a result, Transformer-XL learns dependency that is 80% longer than RNNs and 450% longer than vanilla Transformers, achieves better performance on both short and long sequences, and is up to 1,800+ times faster than vanilla Transformers during evaluation. Notably, we improve the state-of-the-art results of bpc/perplexity to 0.99 on enwiki8, 1.08 on text8, 18.3 on WikiText-103, 21.8 on One Billion Word, and 54.5 on Penn Treebank (without finetuning). When trained only on WikiText-103, Transformer-XL manages to generate reasonably coherent, novel text articles with thousands of tokens. Our code, pretrained models, and hyperparameters are available in both Tensorflow and PyTorch.
READ: Recurrent Adaptation of Large Transformers
Fine-tuning large-scale Transformers has led to the explosion of many AI applications across Natural Language Processing and Computer Vision tasks. However, fine-tuning all pre-trained model parameters becomes impractical as the model size and number of tasks increase. Parameter-efficient transfer learning (PETL) methods aim to address these challenges. While effective in reducing the number of trainable parameters, PETL methods still require significant energy and computational resources to fine-tune. In this paper, we introduce REcurrent ADaption (READ) -- a lightweight and memory-efficient fine-tuning method -- to overcome the limitations of the current PETL approaches. Specifically, READ inserts a small RNN network alongside the backbone model so that the model does not have to back-propagate through the large backbone network. Through comprehensive empirical evaluation of the GLUE benchmark, we demonstrate READ can achieve a 56% reduction in the training memory consumption and an 84% reduction in the GPU energy usage while retraining high model quality compared to full-tuning. Additionally, the model size of READ does not grow with the backbone model size, making it a highly scalable solution for fine-tuning large Transformers.
I-BERT: Integer-only BERT Quantization
Transformer based models, like BERT and RoBERTa, have achieved state-of-the-art results in many Natural Language Processing tasks. However, their memory footprint, inference latency, and power consumption are prohibitive efficient inference at the edge, and even at the data center. While quantization can be a viable solution for this, previous work on quantizing Transformer based models use floating-point arithmetic during inference, which cannot efficiently utilize integer-only logical units such as the recent Turing Tensor Cores, or traditional integer-only ARM processors. In this work, we propose I-BERT, a novel quantization scheme for Transformer based models that quantizes the entire inference with integer-only arithmetic. Based on lightweight integer-only approximation methods for nonlinear operations, e.g., GELU, Softmax, and Layer Normalization, I-BERT performs an end-to-end integer-only BERT inference without any floating point calculation. We evaluate our approach on GLUE downstream tasks using RoBERTa-Base/Large. We show that for both cases, I-BERT achieves similar (and slightly higher) accuracy as compared to the full-precision baseline. Furthermore, our preliminary implementation of I-BERT shows a speedup of 2.4-4.0x for INT8 inference on a T4 GPU system as compared to FP32 inference. The framework has been developed in PyTorch and has been open-sourced.
Subformer: Exploring Weight Sharing for Parameter Efficiency in Generative Transformers
Transformers have shown improved performance when compared to previous architectures for sequence processing such as RNNs. Despite their sizeable performance gains, as recently suggested, the model is computationally expensive to train and with a high parameter budget. In light of this, we explore parameter-sharing methods in Transformers with a specific focus on generative models. We perform an analysis of different parameter sharing/reduction methods and develop the Subformer. Our model combines sandwich-style parameter sharing, which overcomes naive cross-layer parameter sharing in generative models, and self-attentive embedding factorization (SAFE). Experiments on machine translation, abstractive summarization and language modeling show that the Subformer can outperform the Transformer even when using significantly fewer parameters.
Towards a Physics Foundation Model
Foundation models have revolutionized natural language processing through a ``train once, deploy anywhere'' paradigm, where a single pre-trained model adapts to countless downstream tasks without retraining. Access to a Physics Foundation Model (PFM) would be transformative -- democratizing access to high-fidelity simulations, accelerating scientific discovery, and eliminating the need for specialized solver development. Yet current physics-aware machine learning approaches remain fundamentally limited to single, narrow domains and require retraining for each new system. We present the General Physics Transformer (GPhyT), trained on 1.8 TB of diverse simulation data, that demonstrates foundation model capabilities are achievable for physics. Our key insight is that transformers can learn to infer governing dynamics from context, enabling a single model to simulate fluid-solid interactions, shock waves, thermal convection, and multi-phase dynamics without being told the underlying equations. GPhyT achieves three critical breakthroughs: (1) superior performance across multiple physics domains, outperforming specialized architectures by up to 29x, (2) zero-shot generalization to entirely unseen physical systems through in-context learning, and (3) stable long-term predictions through 50-timestep rollouts. By establishing that a single model can learn generalizable physical principles from data alone, this work opens the path toward a universal PFM that could transform computational science and engineering.
Beyond Scaling Laws: Understanding Transformer Performance with Associative Memory
Increasing the size of a Transformer model does not always lead to enhanced performance. This phenomenon cannot be explained by the empirical scaling laws. Furthermore, improved generalization ability occurs as the model memorizes the training samples. We present a theoretical framework that sheds light on the memorization process and performance dynamics of transformer-based language models. We model the behavior of Transformers with associative memories using Hopfield networks, such that each transformer block effectively conducts an approximate nearest-neighbor search. Based on this, we design an energy function analogous to that in the modern continuous Hopfield network which provides an insightful explanation for the attention mechanism. Using the majorization-minimization technique, we construct a global energy function that captures the layered architecture of the Transformer. Under specific conditions, we show that the minimum achievable cross-entropy loss is bounded from below by a constant approximately equal to 1. We substantiate our theoretical results by conducting experiments with GPT-2 on various data sizes, as well as training vanilla Transformers on a dataset of 2M tokens.
An Introduction to Transformers
The transformer is a neural network component that can be used to learn useful representations of sequences or sets of data-points. The transformer has driven recent advances in natural language processing, computer vision, and spatio-temporal modelling. There are many introductions to transformers, but most do not contain precise mathematical descriptions of the architecture and the intuitions behind the design choices are often also missing. Moreover, as research takes a winding path, the explanations for the components of the transformer can be idiosyncratic. In this note we aim for a mathematically precise, intuitive, and clean description of the transformer architecture. We will not discuss training as this is rather standard. We assume that the reader is familiar with fundamental topics in machine learning including multi-layer perceptrons, linear transformations, softmax functions and basic probability.
Quantizable Transformers: Removing Outliers by Helping Attention Heads Do Nothing
Transformer models have been widely adopted in various domains over the last years, and especially large language models have advanced the field of AI significantly. Due to their size, the capability of these networks has increased tremendously, but this has come at the cost of a significant increase in necessary compute. Quantization is one of the most effective ways to reduce the computational time and memory consumption of neural networks. Many studies have shown, however, that modern transformer models tend to learn strong outliers in their activations, making them difficult to quantize. To retain acceptable performance, the existence of these outliers requires activations to be in higher bitwidth or the use of different numeric formats, extra fine-tuning, or other workarounds. We show that strong outliers are related to very specific behavior of attention heads that try to learn a "no-op" or just a partial update of the residual. To achieve the exact zeros needed in the attention matrix for a no-update, the input to the softmax is pushed to be larger and larger during training, causing outliers in other parts of the network. Based on these observations, we propose two simple (independent) modifications to the attention mechanism - clipped softmax and gated attention. We empirically show that models pre-trained using our methods learn significantly smaller outliers while maintaining and sometimes even improving the floating-point task performance. This enables us to quantize transformers to full INT8 quantization of the activations without any additional effort. We demonstrate the effectiveness of our methods on both language models (BERT, OPT) and vision transformers.
PVP: Pre-trained Visual Parameter-Efficient Tuning
Large-scale pre-trained transformers have demonstrated remarkable success in various computer vision tasks. However, it is still highly challenging to fully fine-tune these models for downstream tasks due to their high computational and storage costs. Recently, Parameter-Efficient Tuning (PETuning) techniques, e.g., Visual Prompt Tuning (VPT) and Low-Rank Adaptation (LoRA), have significantly reduced the computation and storage cost by inserting lightweight prompt modules into the pre-trained models and tuning these prompt modules with a small number of trainable parameters, while keeping the transformer backbone frozen. Although only a few parameters need to be adjusted, most PETuning methods still require a significant amount of downstream task training data to achieve good results. The performance is inadequate on low-data regimes, especially when there are only one or two examples per class. To this end, we first empirically identify the poor performance is mainly due to the inappropriate way of initializing prompt modules, which has also been verified in the pre-trained language models. Next, we propose a Pre-trained Visual Parameter-efficient (PVP) Tuning framework, which pre-trains the parameter-efficient tuning modules first and then leverages the pre-trained modules along with the pre-trained transformer backbone to perform parameter-efficient tuning on downstream tasks. Experiment results on five Fine-Grained Visual Classification (FGVC) and VTAB-1k datasets demonstrate that our proposed method significantly outperforms state-of-the-art PETuning methods.
The Nature of Mathematical Modeling and Probabilistic Optimization Engineering in Generative AI
In this paper, we give an in-depth analysis on the mathematical problem formulations and the probabilistic optimization explorations for some of the key components in Transformer model [33] in the field of generative AI. We explore and discuss some potential further enhancement for current state of the art methods for some key underlying technologies of generative AI models from algorithmic and probabilistic optimization perspective. In particular, we present an optimal solution for sub-word encoding (SWE) based on similar initial settings as that of byte-pair encoding (BPE) algorithm in [9] with similar objectives as that of WordPiece approach in [28, 31] to maximize the likelihood of the training data. We also present cross entropy optimization method to optimize hyperparameters for word2vec model [17]. In addition, we propose a factored combination of rotary positional encoding (RoPE) [32] and attention with linear biases (ALiBi) [23] with a harmonic series. We also present a probabilistic FlashAttention [6, 7] (PrFlashAttention) method with a probability distribution over block distances in the matrix to decide which block is likely to participate in a given round of attention computation while maintaining the lower triangle shape of the tensor for autoregressive language models by re-shaping the tensors. Finally, we present staircase adaptive quantization (SAQ) of key-value (KV) cache for multi-query attention (MQA) based on the framework presented in [16] to have gradual quantization degradation while achieving reasonable model quality and cost savings.
A Survey of Transformers
Transformers have achieved great success in many artificial intelligence fields, such as natural language processing, computer vision, and audio processing. Therefore, it is natural to attract lots of interest from academic and industry researchers. Up to the present, a great variety of Transformer variants (a.k.a. X-formers) have been proposed, however, a systematic and comprehensive literature review on these Transformer variants is still missing. In this survey, we provide a comprehensive review of various X-formers. We first briefly introduce the vanilla Transformer and then propose a new taxonomy of X-formers. Next, we introduce the various X-formers from three perspectives: architectural modification, pre-training, and applications. Finally, we outline some potential directions for future research.
Understanding In-Context Learning in Transformers and LLMs by Learning to Learn Discrete Functions
In order to understand the in-context learning phenomenon, recent works have adopted a stylized experimental framework and demonstrated that Transformers can learn gradient-based learning algorithms for various classes of real-valued functions. However, the limitations of Transformers in implementing learning algorithms, and their ability to learn other forms of algorithms are not well understood. Additionally, the degree to which these capabilities are confined to attention-based models is unclear. Furthermore, it remains to be seen whether the insights derived from these stylized settings can be extrapolated to pretrained Large Language Models (LLMs). In this work, we take a step towards answering these questions by demonstrating the following: (a) On a test-bed with a variety of Boolean function classes, we find that Transformers can nearly match the optimal learning algorithm for 'simpler' tasks, while their performance deteriorates on more 'complex' tasks. Additionally, we find that certain attention-free models perform (almost) identically to Transformers on a range of tasks. (b) When provided a teaching sequence, i.e. a set of examples that uniquely identifies a function in a class, we show that Transformers learn more sample-efficiently. Interestingly, our results show that Transformers can learn to implement two distinct algorithms to solve a single task, and can adaptively select the more sample-efficient algorithm depending on the sequence of in-context examples. (c) Lastly, we show that extant LLMs, e.g. LLaMA-2, GPT-4, can compete with nearest-neighbor baselines on prediction tasks that are guaranteed to not be in their training set.
Dynamic Context Pruning for Efficient and Interpretable Autoregressive Transformers
Autoregressive Transformers adopted in Large Language Models (LLMs) are hard to scale to long sequences. Despite several works trying to reduce their computational cost, most of LLMs still adopt attention layers between all pairs of tokens in the sequence, thus incurring a quadratic cost. In this study, we present a novel approach that dynamically prunes contextual information while preserving the model's expressiveness, resulting in reduced memory and computational requirements during inference. Our method employs a learnable mechanism that determines which uninformative tokens can be dropped from the context at any point across the generation process. By doing so, our approach not only addresses performance concerns but also enhances interpretability, providing valuable insight into the model's decision-making process. Our technique can be applied to existing pre-trained models through a straightforward fine-tuning process, and the pruning strength can be specified by a sparsity parameter. Notably, our empirical findings demonstrate that we can effectively prune up to 80\% of the context without significant performance degradation on downstream tasks, offering a valuable tool for mitigating inference costs. Our reference implementation achieves up to 2times increase in inference throughput and even greater memory savings.
JetFormer: An Autoregressive Generative Model of Raw Images and Text
Removing modeling constraints and unifying architectures across domains has been a key driver of the recent progress in training large multimodal models. However, most of these models still rely on many separately trained components such as modality-specific encoders and decoders. In this work, we further streamline joint generative modeling of images and text. We propose an autoregressive decoder-only transformer - JetFormer - which is trained to directly maximize the likelihood of raw data, without relying on any separately pretrained components, and can understand and generate both text and images. Specifically, we leverage a normalizing flow model to obtain a soft-token image representation that is jointly trained with an autoregressive multimodal transformer. The normalizing flow model serves as both an image encoder for perception tasks and an image decoder for image generation tasks during inference. JetFormer achieves text-to-image generation quality competitive with recent VQ-VAE- and VAE-based baselines. These baselines rely on pretrained image autoencoders, which are trained with a complex mixture of losses, including perceptual ones. At the same time, JetFormer demonstrates robust image understanding capabilities. To the best of our knowledge, JetFormer is the first model that is capable of generating high-fidelity images and producing strong log-likelihood bounds.
Understanding 3D Object Interaction from a Single Image
Humans can easily understand a single image as depicting multiple potential objects permitting interaction. We use this skill to plan our interactions with the world and accelerate understanding new objects without engaging in interaction. In this paper, we would like to endow machines with the similar ability, so that intelligent agents can better explore the 3D scene or manipulate objects. Our approach is a transformer-based model that predicts the 3D location, physical properties and affordance of objects. To power this model, we collect a dataset with Internet videos, egocentric videos and indoor images to train and validate our approach. Our model yields strong performance on our data, and generalizes well to robotics data.
Scaleformer: Iterative Multi-scale Refining Transformers for Time Series Forecasting
The performance of time series forecasting has recently been greatly improved by the introduction of transformers. In this paper, we propose a general multi-scale framework that can be applied to the state-of-the-art transformer-based time series forecasting models (FEDformer, Autoformer, etc.). By iteratively refining a forecasted time series at multiple scales with shared weights, introducing architecture adaptations, and a specially-designed normalization scheme, we are able to achieve significant performance improvements, from 5.5% to 38.5% across datasets and transformer architectures, with minimal additional computational overhead. Via detailed ablation studies, we demonstrate the effectiveness of each of our contributions across the architecture and methodology. Furthermore, our experiments on various public datasets demonstrate that the proposed improvements outperform their corresponding baseline counterparts. Our code is publicly available in https://github.com/BorealisAI/scaleformer.
A Multi-Level Framework for Accelerating Training Transformer Models
The fast growing capabilities of large-scale deep learning models, such as Bert, GPT and ViT, are revolutionizing the landscape of NLP, CV and many other domains. Training such models, however, poses an unprecedented demand for computing power, which incurs exponentially increasing energy cost and carbon dioxide emissions. It is thus critical to develop efficient training solutions to reduce the training costs. Motivated by a set of key observations of inter- and intra-layer similarities among feature maps and attentions that can be identified from typical training processes, we propose a multi-level framework for training acceleration. Specifically, the framework is based on three basic operators, Coalescing, De-coalescing and Interpolation, which can be orchestrated to build a multi-level training framework. The framework consists of a V-cycle training process, which progressively down- and up-scales the model size and projects the parameters between adjacent levels of models via coalescing and de-coalescing. The key idea is that a smaller model that can be trained for fast convergence and the trained parameters provides high-qualities intermediate solutions for the next level larger network. The interpolation operator is designed to break the symmetry of neurons incurred by de-coalescing for better convergence performance. Our experiments on transformer-based language models (e.g. Bert, GPT) as well as a vision model (e.g. DeiT) prove that the proposed framework reduces the computational cost by about 20% on training BERT/GPT-Base models and up to 51.6% on training the BERT-Large model while preserving the performance.
Efficient Language Modeling for Low-Resource Settings with Hybrid RNN-Transformer Architectures
Transformer-based language models have recently been at the forefront of active research in text generation. However, these models' advances come at the price of prohibitive training costs, with parameter counts in the billions and compute requirements measured in petaflop/s-decades. In this paper, we investigate transformer-based architectures for improving model performance in a low-data regime by selectively replacing attention layers with feed-forward and quasi-recurrent neural network layers. We test these architectures on the standard Enwik8 and Wikitext-103 corpora. Our results show that our reduced architectures outperform existing models with a comparable number of parameters, and obtain comparable performance to larger models while significantly reducing the number of parameters.
Filtering Learning Histories Enhances In-Context Reinforcement Learning
Transformer models (TMs) have exhibited remarkable in-context reinforcement learning (ICRL) capabilities, allowing them to generalize to and improve in previously unseen environments without re-training or fine-tuning. This is typically accomplished by imitating the complete learning histories of a source RL algorithm over a substantial amount of pretraining environments, which, however, may transfer suboptimal behaviors inherited from the source algorithm/dataset. Therefore, in this work, we address the issue of inheriting suboptimality from the perspective of dataset preprocessing. Motivated by the success of the weighted empirical risk minimization, we propose a simple yet effective approach, learning history filtering (LHF), to enhance ICRL by reweighting and filtering the learning histories based on their improvement and stability characteristics. To the best of our knowledge, LHF is the first approach to avoid source suboptimality by dataset preprocessing, and can be combined with the current state-of-the-art (SOTA) ICRL algorithms. We substantiate the effectiveness of LHF through a series of experiments conducted on the well-known ICRL benchmarks, encompassing both discrete environments and continuous robotic manipulation tasks, with three SOTA ICRL algorithms (AD, DPT, DICP) as the backbones. LHF exhibits robust performance across a variety of suboptimal scenarios, as well as under varying hyperparameters and sampling strategies. Notably, the superior performance of LHF becomes more pronounced in the presence of noisy data, indicating the significance of filtering learning histories.
Context-aware Rotary Position Embedding
Positional encoding is a vital component of Transformer architectures, enabling models to incorporate sequence order into self-attention mechanisms. Rotary Positional Embeddings (RoPE) have become a widely adopted solution due to their compatibility with relative position encoding and computational efficiency. However, RoPE relies on static, input-independent sinusoidal frequency patterns, limiting its ability to model context-sensitive relationships. In this work, we propose CARoPE (Context-Aware Rotary Positional Embedding), a novel generalization of RoPE that dynamically generates head-specific frequency patterns conditioned on token embeddings. This design introduces token- and context-sensitive positional representations while preserving RoPE efficiency and architectural simplicity. CARoPE computes input-dependent phase shifts using a bounded transformation of token embeddings and integrates them into the rotary mechanism across attention heads. We evaluate CARoPE on the FineWeb-Edu-10B dataset using GPT-2 variants trained on next-token prediction tasks. Experimental results show that CARoPE consistently outperforms RoPE and other common positional encoding baselines, achieving significantly lower perplexity, even at longer context lengths. Additionally, CARoPE enables faster training throughput without sacrificing model stability. These findings demonstrate that CARoPE offers a scalable, expressive, and efficient upgrade to existing positional encoding strategies in Transformer models.
Local Learning on Transformers via Feature Reconstruction
Transformers are becoming increasingly popular due to their superior performance over conventional convolutional neural networks(CNNs). However, transformers usually require a much larger amount of memory to train than CNNs, which prevents their application in many low resource settings. Local learning, which divides the network into several distinct modules and trains them individually, is a promising alternative to the end-to-end (E2E) training approach to reduce the amount of memory for training and to increase parallelism. This paper is the first to apply Local Learning on transformers for this purpose. The standard CNN-based local learning method, InfoPro [32], reconstructs the input images for each module in a CNN. However, reconstructing the entire image does not generalize well. In this paper, we propose a new mechanism for each local module, where instead of reconstructing the entire image, we reconstruct its input features, generated from previous modules. We evaluate our approach on 4 commonly used datasets and 3 commonly used decoder structures on Swin-Tiny. The experiments show that our approach outperforms InfoPro-Transformer, the InfoPro with Transfomer backbone we introduced, by at up to 0.58% on CIFAR-10, CIFAR-100, STL-10 and SVHN datasets, while using up to 12% less memory. Compared to the E2E approach, we require 36% less GPU memory when the network is divided into 2 modules and 45% less GPU memory when the network is divided into 4 modules.
Choose a Transformer: Fourier or Galerkin
In this paper, we apply the self-attention from the state-of-the-art Transformer in Attention Is All You Need for the first time to a data-driven operator learning problem related to partial differential equations. An effort is put together to explain the heuristics of, and to improve the efficacy of the attention mechanism. By employing the operator approximation theory in Hilbert spaces, it is demonstrated for the first time that the softmax normalization in the scaled dot-product attention is sufficient but not necessary. Without softmax, the approximation capacity of a linearized Transformer variant can be proved to be comparable to a Petrov-Galerkin projection layer-wise, and the estimate is independent with respect to the sequence length. A new layer normalization scheme mimicking the Petrov-Galerkin projection is proposed to allow a scaling to propagate through attention layers, which helps the model achieve remarkable accuracy in operator learning tasks with unnormalized data. Finally, we present three operator learning experiments, including the viscid Burgers' equation, an interface Darcy flow, and an inverse interface coefficient identification problem. The newly proposed simple attention-based operator learner, Galerkin Transformer, shows significant improvements in both training cost and evaluation accuracy over its softmax-normalized counterparts.
