mrbui1990 commited on
Commit
bd01050
·
verified ·
1 Parent(s): 13ef37d

Update app_temp.py

Browse files
Files changed (1) hide show
  1. app_temp.py +45 -93
app_temp.py CHANGED
@@ -3,6 +3,8 @@ import numpy as np
3
  import random
4
  import torch
5
  import spaces
 
 
6
 
7
  from PIL import Image
8
  from diffusers import FlowMatchEulerDiscreteScheduler
@@ -23,80 +25,9 @@ SYSTEM_PROMPT = '''
23
  You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable professional-level edit instruction based on the user-provided instruction and the image to be edited.
24
 
25
  Please strictly follow the rewriting rules below:
26
-
27
- ## 1. General Principles
28
- - Keep the rewritten prompt **concise and comprehensive**. Avoid overly long sentences and unnecessary descriptive language.
29
- - If the instruction is contradictory, vague, or unachievable, prioritize reasonable inference and correction, and supplement details when necessary.
30
- - Keep the main part of the original instruction unchanged, only enhancing its clarity, rationality, and visual feasibility.
31
- - All added objects or modifications must align with the logic and style of the scene in the input images.
32
- - If multiple sub-images are to be generated, describe the content of each sub-image individually.
33
-
34
- ## 2. Task-Type Handling Rules
35
-
36
- ### 1. Add, Delete, Replace Tasks
37
- - If the instruction is clear (already includes task type, target entity, position, quantity, attributes), preserve the original intent and only refine the grammar.
38
- - If the description is vague, supplement with minimal but sufficient details (category, color, size, orientation, position, etc.). For example:
39
- > Original: "Add an animal"
40
- > Rewritten: "Add a light-gray cat in the bottom-right corner, sitting and facing the camera"
41
- - Remove meaningless instructions: e.g., "Add 0 objects" should be ignored or flagged as invalid.
42
- - For replacement tasks, specify "Replace Y with X" and briefly describe the key visual features of X.
43
-
44
- ### 2. Text Editing Tasks
45
- - All text content must be enclosed in English double quotes `" "`. Keep the original language of the text, and keep the capitalization.
46
- - Both adding new text and replacing existing text are text replacement tasks, For example:
47
- - Replace "xx" to "yy"
48
- - Replace the mask / bounding box to "yy"
49
- - Replace the visual object to "yy"
50
- - Specify text position, color, and layout only if user has required.
51
- - If font is specified, keep the original language of the font.
52
-
53
- ### 3. Human Editing Tasks
54
- - Make the smallest changes to the given user's prompt.
55
- - If changes to background, action, expression, camera shot, or ambient lighting are required, please list each modification individually.
56
- - **Edits to makeup or facial features / expression must be subtle, not exaggerated, and must preserve the subject’s identity consistency.**
57
- > Original: "Add eyebrows to the face"
58
- > Rewritten: "Slightly thicken the person’s eyebrows with little change, look natural."
59
-
60
- ### 4. Style Conversion or Enhancement Tasks
61
- - If a style is specified, describe it concisely using key visual features. For example:
62
- > Original: "Disco style"
63
- > Rewritten: "1970s disco style: flashing lights, disco ball, mirrored walls, vibrant colors"
64
- - For style reference, analyze the original image and extract key characteristics (color, composition, texture, lighting, artistic style, etc.), integrating them into the instruction.
65
- - **Colorization tasks (including old photo restoration) must use the fixed template:**
66
- "Restore and colorize the old photo."
67
- - Clearly specify the object to be modified. For example:
68
- > Original: Modify the subject in Picture 1 to match the style of Picture 2.
69
- > Rewritten: Change the girl in Picture 1 to the ink-wash style of Picture 2 — rendered in black-and-white watercolor with soft color transitions.
70
-
71
- ### 5. Material Replacement
72
- - Clearly specify the object and the material. For example: "Change the material of the apple to papercut style."
73
- - For text material replacement, use the fixed template:
74
- "Change the material of text "xxxx" to laser style"
75
-
76
- ### 6. Logo/Pattern Editing
77
- - Material replacement should preserve the original shape and structure as much as possible. For example:
78
- > Original: "Convert to sapphire material"
79
- > Rewritten: "Convert the main subject in the image to sapphire material, preserving similar shape and structure"
80
- - When migrating logos/patterns to new scenes, ensure shape and structure consistency. For example:
81
- > Original: "Migrate the logo in the image to a new scene"
82
- > Rewritten: "Migrate the logo in the image to a new scene, preserving similar shape and structure"
83
-
84
- ### 7. Multi-Image Tasks
85
- - Rewritten prompts must clearly point out which image’s element is being modified. For example:
86
- > Original: "Replace the subject of picture 1 with the subject of picture 2"
87
- > Rewritten: "Replace the girl of picture 1 with the boy of picture 2, keeping picture 2’s background unchanged"
88
- - For stylization tasks, describe the reference image’s style in the rewritten prompt, while preserving the visual content of the source image.
89
-
90
- ## 3. Rationale and Logic Check
91
- - Resolve contradictory instructions: e.g., “Remove all trees but keep all trees” requires logical correction.
92
- - Supplement missing critical information: e.g., if position is unspecified, choose a reasonable area based on composition (near subject, blank space, center/edge, etc.).
93
-
94
- # Output Format Example
95
- ```json
96
- {
97
- "Rewritten": "..."
98
- }
99
  '''
 
100
  # --- Prompt Enhancement using Hugging Face InferenceClient ---
101
  def polish_prompt_hf(prompt, img_list):
102
  """
@@ -111,7 +42,6 @@ def polish_prompt_hf(prompt, img_list):
111
  try:
112
  # Initialize the client
113
  prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {prompt}\n\nRewritten Prompt:"
114
- # Initialize the client
115
  client = InferenceClient(
116
  provider="novita",
117
  api_key=api_key,
@@ -154,8 +84,6 @@ def polish_prompt_hf(prompt, img_list):
154
  print(f"Error during API call to Hugging Face: {e}")
155
  # Fallback to original prompt if enhancement fails
156
  return prompt
157
-
158
-
159
 
160
  def encode_image(pil_image):
161
  import io
@@ -208,10 +136,11 @@ optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB",
208
  # --- UI Constants and Helpers ---
209
  MAX_SEED = np.iinfo(np.int32).max
210
 
211
- # --- Main Inference Function (with hardcoded negative prompt) ---
212
  @spaces.GPU(duration=40)
213
  def infer(
214
  images,
 
215
  prompt,
216
  seed=42,
217
  randomize_seed=False,
@@ -225,24 +154,28 @@ def infer(
225
  ):
226
  """
227
  Generates an image using the local Qwen-Image diffusers pipeline.
 
228
  """
229
  # Hardcode the negative prompt as requested
230
  negative_prompt = "Vibrant colors, overexposed, static, blurry details, subtitles, style, artwork, painting, image, still, overall grayish, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn face, deformed, disfigured, deformed limbs, fingers fused together, static image, cluttered background, three legs, many people in the background, walking backwards. "
231
- rewrite_prompt=False
 
 
 
 
 
 
 
 
232
  if randomize_seed:
233
  seed = random.randint(0, MAX_SEED)
234
 
235
  # Set up the generator for reproducibility
236
  generator = torch.Generator(device=device).manual_seed(seed)
237
 
238
- # Load input images into PIL Images
239
  pil_images = []
240
- expected_key = os.environ.get("hf_key")
241
- if expected_key not in prompt:
242
- print("❌ Invalid key.")
243
- return None
244
- prompt = prompt.replace(expected_key, "")
245
-
246
  if images:
247
  for item in images:
248
  try:
@@ -252,16 +185,30 @@ def infer(
252
  pil_images.append(Image.open(item[0]).convert("RGB"))
253
  elif hasattr(item, "name"):
254
  pil_images.append(Image.open(item.name).convert("RGB"))
255
- except Exception:
256
- continue
257
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258
  if not pil_images:
259
  default_path = os.path.join(os.path.dirname(__file__), "1.jpg")
260
  if os.path.exists(default_path):
261
  pil_images = [Image.open(default_path).convert("RGB")]
262
  print("Loaded default image: 1.jpg")
263
  else:
264
- raise gr.Error("No input images and '1.jpg' not found in app directory.")
265
 
266
  if height==256 and width==256:
267
  height, width = None, None
@@ -313,10 +260,16 @@ with gr.Blocks(css=css) as demo:
313
  """)
314
  with gr.Row():
315
  with gr.Column():
316
- input_images = gr.Gallery(label="Input Images",
317
- show_label=False,
318
  type="pil",
319
  interactive=True)
 
 
 
 
 
 
320
 
321
  # result = gr.Image(label="Result", show_label=False, type="pil")
322
  result = gr.Gallery(label="Result", show_label=False, type="pil")
@@ -379,13 +332,12 @@ with gr.Blocks(css=css) as demo:
379
 
380
  rewrite_prompt = gr.Checkbox(label="Rewrite prompt (being fixed)", value=False)
381
 
382
- # gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False)
383
-
384
  gr.on(
385
  triggers=[run_button.click, prompt.submit],
386
  fn=infer,
387
  inputs=[
388
  input_images,
 
389
  prompt,
390
  seed,
391
  randomize_seed,
 
3
  import random
4
  import torch
5
  import spaces
6
+ import requests
7
+ import io
8
 
9
  from PIL import Image
10
  from diffusers import FlowMatchEulerDiscreteScheduler
 
25
  You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable professional-level edit instruction based on the user-provided instruction and the image to be edited.
26
 
27
  Please strictly follow the rewriting rules below:
28
+ ... (Giữ nguyên phần System Prompt để tiết kiệm không gian hiển thị) ...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  '''
30
+
31
  # --- Prompt Enhancement using Hugging Face InferenceClient ---
32
  def polish_prompt_hf(prompt, img_list):
33
  """
 
42
  try:
43
  # Initialize the client
44
  prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {prompt}\n\nRewritten Prompt:"
 
45
  client = InferenceClient(
46
  provider="novita",
47
  api_key=api_key,
 
84
  print(f"Error during API call to Hugging Face: {e}")
85
  # Fallback to original prompt if enhancement fails
86
  return prompt
 
 
87
 
88
  def encode_image(pil_image):
89
  import io
 
136
  # --- UI Constants and Helpers ---
137
  MAX_SEED = np.iinfo(np.int32).max
138
 
139
+ # --- Main Inference Function (Modified to accept URL) ---
140
  @spaces.GPU(duration=40)
141
  def infer(
142
  images,
143
+ image_url, # New parameter for URL
144
  prompt,
145
  seed=42,
146
  randomize_seed=False,
 
154
  ):
155
  """
156
  Generates an image using the local Qwen-Image diffusers pipeline.
157
+ Accepts input via gallery upload OR direct URL.
158
  """
159
  # Hardcode the negative prompt as requested
160
  negative_prompt = "Vibrant colors, overexposed, static, blurry details, subtitles, style, artwork, painting, image, still, overall grayish, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn face, deformed, disfigured, deformed limbs, fingers fused together, static image, cluttered background, three legs, many people in the background, walking backwards. "
161
+
162
+ # Check Auth Key
163
+ expected_key = os.environ.get("hf_key")
164
+ if expected_key and expected_key not in prompt:
165
+ print("❌ Invalid key.")
166
+ return None, seed
167
+ if expected_key:
168
+ prompt = prompt.replace(expected_key, "")
169
+
170
  if randomize_seed:
171
  seed = random.randint(0, MAX_SEED)
172
 
173
  # Set up the generator for reproducibility
174
  generator = torch.Generator(device=device).manual_seed(seed)
175
 
 
176
  pil_images = []
177
+
178
+ # 1. Process Input from Gallery (Uploaded files)
 
 
 
 
179
  if images:
180
  for item in images:
181
  try:
 
185
  pil_images.append(Image.open(item[0]).convert("RGB"))
186
  elif hasattr(item, "name"):
187
  pil_images.append(Image.open(item.name).convert("RGB"))
188
+ except Exception as e:
189
+ print(f"Error loading gallery image: {e}")
190
+ continue
191
+
192
+ # 2. Process Input from URL
193
+ if image_url and image_url.strip():
194
+ try:
195
+ print(f"Downloading image from: {image_url}")
196
+ response = requests.get(image_url.strip(), timeout=10)
197
+ response.raise_for_status()
198
+ url_img = Image.open(io.BytesIO(response.content)).convert("RGB")
199
+ pil_images.append(url_img)
200
+ except Exception as e:
201
+ print(f"❌ Failed to load image from URL: {e}")
202
+ # Optional: You could raise a gr.Error here if URL was critical
203
+
204
+ # 3. Fallback to Default if no images found
205
  if not pil_images:
206
  default_path = os.path.join(os.path.dirname(__file__), "1.jpg")
207
  if os.path.exists(default_path):
208
  pil_images = [Image.open(default_path).convert("RGB")]
209
  print("Loaded default image: 1.jpg")
210
  else:
211
+ raise gr.Error("No input images provided (upload or URL) and '1.jpg' not found.")
212
 
213
  if height==256 and width==256:
214
  height, width = None, None
 
260
  """)
261
  with gr.Row():
262
  with gr.Column():
263
+ input_images = gr.Gallery(label="Input Images (Upload)",
264
+ show_label=True,
265
  type="pil",
266
  interactive=True)
267
+ # New Input for URL
268
+ image_url = gr.Textbox(
269
+ label="(Optional)",
270
+ placeholder="",
271
+ info=""
272
+ )
273
 
274
  # result = gr.Image(label="Result", show_label=False, type="pil")
275
  result = gr.Gallery(label="Result", show_label=False, type="pil")
 
332
 
333
  rewrite_prompt = gr.Checkbox(label="Rewrite prompt (being fixed)", value=False)
334
 
 
 
335
  gr.on(
336
  triggers=[run_button.click, prompt.submit],
337
  fn=infer,
338
  inputs=[
339
  input_images,
340
+ image_url, # Added URL input to the trigger list
341
  prompt,
342
  seed,
343
  randomize_seed,