ViViT_wlasl_100_200ep_coR_

This model is a fine-tuned version of google/vivit-b-16x2-kinetics400 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6046
  • Accuracy: 0.6716

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 36000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
18.8652 0.005 180 4.6810 0.0148
18.549 1.0050 360 4.6061 0.0325
18.0062 2.0050 540 4.5292 0.0414
17.0211 3.0050 721 4.3745 0.0710
15.802 4.005 901 4.1370 0.1036
14.0884 5.0050 1081 3.8357 0.1746
12.1547 6.0050 1261 3.5013 0.2633
10.1205 7.0050 1442 3.1863 0.3284
8.1175 8.005 1622 2.8482 0.3757
6.3088 9.0050 1802 2.5647 0.4704
4.6768 10.0050 1982 2.2896 0.5030
3.2458 11.0050 2163 2.0975 0.5444
2.2535 12.005 2343 1.9396 0.5799
1.428 13.0050 2523 1.7295 0.6006
0.8599 14.0050 2703 1.6543 0.6183
0.5308 15.0050 2884 1.5458 0.6124
0.3372 16.005 3064 1.5154 0.6095
0.1854 17.0050 3244 1.5216 0.6302
0.1656 18.0050 3424 1.4448 0.6361
0.0996 19.0050 3605 1.4351 0.6538
0.1046 20.005 3785 1.4932 0.6479
0.1091 21.0050 3965 1.2451 0.6893
0.0605 22.0050 4145 1.3669 0.6716
0.1048 23.0050 4326 1.3276 0.6982
0.0915 24.005 4506 1.3500 0.6746
0.0642 25.0050 4686 1.4862 0.6065
0.1054 26.0050 4866 1.6206 0.6154
0.1265 27.0050 5047 1.4605 0.6420
0.0877 28.005 5227 1.5949 0.6331
0.1579 29.0050 5407 1.5345 0.6450
0.1928 30.0050 5587 1.6247 0.6450
0.11 31.0050 5768 1.6054 0.6450
0.0869 32.005 5948 1.5318 0.6538
0.1257 33.0050 6128 1.7027 0.6420
0.1298 34.0050 6308 1.5279 0.6479
0.1271 35.0050 6489 1.5453 0.6420
0.1827 36.005 6669 1.7248 0.6391
0.0853 37.0050 6849 1.5689 0.6746
0.1227 38.0050 7029 1.8474 0.6065
0.1244 39.0050 7210 1.7365 0.6538
0.1471 40.005 7390 1.6086 0.6538
0.1105 41.0050 7570 1.7311 0.6509
0.1412 42.0050 7750 1.6021 0.6686
0.0758 43.0050 7931 1.6046 0.6716

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
202
Safetensors
Model size
88.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Shawon16/ViViT_wlasl_100_200ep_coR_

Finetuned
(75)
this model

Evaluation results