PaCo-RL
Collection
Data and Model collection for PaCo-RL
β’
9 items
β’
Updated
β’
7
The model presented in PaCo-RL: Advancing Reinforcement Learning for Consistent Image Generation with Pairwise Reward Modeling.
PaCo-RL is a comprehensive framework for consistent image generation through reinforcement learning, addressing challenges in preserving identities, styles, and logical coherence across multiple images for storytelling and character design applications.
import torch
from diffusers import FluxKontextPipeline
from peft import PeftModel
from diffusers.utils import load_image
pipe = FluxKontextPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Kontext-dev",
torch_dtype=torch.bfloat16,
device_map="cuda"
)
pipe.transformer = PeftModel.from_pretrained(
pipe.transformer,
'X-GenGroup/PaCo-FLUX.1-Kontext-Lora'
)
input_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png")
image = pipe(
image=input_image,
prompt="Add a blue hat to the cat",
guidance_scale=2.5
).images[0]
| Model | Type | HuggingFace |
|---|---|---|
| PaCo-Reward-7B | Reward Model | π€ Link |
| PaCo-Reward-7B-Lora | Reward Model (LoRA) | π€ Link |
| PaCo-FLUX.1-dev | T2I Model (LoRA) | π€ Link |
| PaCo-FLUX.1-Kontext-dev | Image Editing Model (LoRA) | π€ Link |
| PaCo-QwenImage-Edit | Image Editing Model (LoRA) | π€ Link |
@misc{ping2025pacorladvancingreinforcementlearning,
title={PaCo-RL: Advancing Reinforcement Learning for Consistent Image Generation with Pairwise Reward Modeling},
author={Bowen Ping and Chengyou Jia and Minnan Luo and Changliang Xia and Xin Shen and Zhuohang Dang and Hangwei Qian},
year={2025},
eprint={2512.04784},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2512.04784},
}