Higia Llama 3.1 8B Medical - Epoch 2 (Final) 🏥
Modelo final especializado en razonamiento médico en español.
Métricas
- Accuracy: 0.853 (85.3%)
- Loss: 0.448
- Steps: 29,781
- Training: ~47h en 8x A40
Uso
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("nsumonte/higia-llama3.1-8b-medical-epoch2", torch_dtype="auto", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("nsumonte/higia-llama3.1-8b-medical-epoch2")
messages = [{"role": "user", "content": "¿Cuáles son los síntomas de diabetes tipo 2?"}]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
outputs = model.generate(inputs, max_new_tokens=512)
print(tokenizer.decode(outputs[0]))
Progresión
| Epoch | Acc | Loss |
|---|---|---|
| 0 | 0.77 | 0.75 |
| 1 | 0.81 | 0.615 |
| 2 | 0.853 | 0.448 |
Detalles
- Base: meta-llama/Llama-3.1-8B-Instruct
- Dataset: ~140K ejemplos médicos español
- Hardware: 8x NVIDIA A40
- Framework: DeepSpeed ZeRO-3
⚠️ NO reemplaza consejo médico profesional
Autor
Nicolás Sumonte - [email protected]
- Downloads last month
- 33
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for nsumonte/higia-llama3.1-8b-medical-epoch2
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct