Higia Llama 3.1 8B Medical - Epoch 2 (Final) 🏥

Modelo final especializado en razonamiento médico en español.

Métricas

  • Accuracy: 0.853 (85.3%)
  • Loss: 0.448
  • Steps: 29,781
  • Training: ~47h en 8x A40

Uso

from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("nsumonte/higia-llama3.1-8b-medical-epoch2", torch_dtype="auto", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("nsumonte/higia-llama3.1-8b-medical-epoch2")

messages = [{"role": "user", "content": "¿Cuáles son los síntomas de diabetes tipo 2?"}]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
outputs = model.generate(inputs, max_new_tokens=512)
print(tokenizer.decode(outputs[0]))

Progresión

Epoch Acc Loss
0 0.77 0.75
1 0.81 0.615
2 0.853 0.448

Detalles

  • Base: meta-llama/Llama-3.1-8B-Instruct
  • Dataset: ~140K ejemplos médicos español
  • Hardware: 8x NVIDIA A40
  • Framework: DeepSpeed ZeRO-3

⚠️ NO reemplaza consejo médico profesional

Autor

Nicolás Sumonte - [email protected]

Downloads last month
33
Safetensors
Model size
266k params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for nsumonte/higia-llama3.1-8b-medical-epoch2

Finetuned
(2072)
this model